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ABSTRACT

Shape descriptors are used extensively in computer vision/automated recognition applications

such as fingerprint matching, robotics, character recognition, etc. The conventional two-

dimensional shape descriptors used in these applications do not readily lend themselves to

compact representations in three dimensions. The situation is even more challenging when one

attempts to numerically describe the three-dimensional shapes of a mixture of objects such as in

an aggregate mix.

The goal of this study is the design, development and validation of automated image

processing algorithms that can estimate three-dimensional shape-descriptors for particle

aggregates. The thesis demonstrates that a single set of numbers representing a composite three-

dimensional shape can be used to characterize all the varying three-dimensional shapes of similar

particles in an aggregate mix. The composite shape is obtained by subdividing the problem into a

judicious combination of simple techniques - two-dimensional shape description using Fourier

and/or invariant moment descriptors, feature extraction using principal component analysis,

statistical modeling.and projective reconstruction.

The algorithms developed in this thesis are applied for describing the three-dimensional

shapes of particle aggregates in sand mixes. Geomaterial response such as shear strength is

significantly affected by particle shape - and a numerical description of shape allows for

calculation of functional characteristics using other previously established models. Results

demonstrating the consistency, separability and uniqueness of the three-dimensional shape

descriptor algorithms are presented.
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CHAPTER 1: INTRODUCTION

Describing purely the shape of an object regardless of its size can sometimes be a trivial task. A

simple object such as a circle or a square may be quickly identified and recognized by the use of

a single word. If the shape needs to be depicted later, the word describing the shape is the only

information necessary to replicate it. Oftentimes in the real world shapes are not as simple as

squares and circles. There are only so many words to describe shapes with increasingly more

sides, until they simply become n-sided polygons. In addition to this, the shapes are not always

equilateral and equiangular; therefore lengths and angles of all sides must be recorded in order to

recreate a complicated shape. When shapes are seen as irregular objects with no specific length

or angle pattern, words are no longer adequate for describing their boundary.

The best solution is to use a set of numbers to capture the behavior of the edge of an

object. This could be something as simple as finding the length and angle of each portion of the

shape, or something more complex, which may relate many features together using fewer

numbers. Numbers offer a quantitative way to examine shape boundaries and allow computers

to evaluate the data. Computers can be used to process large amounts of data retrieved from

many images to make an automated process for analyzing shapes. The numbers obtained by

characterizing a shape can be used to spot generic trends or patterns that relate values to physical

geometric properties. This could be helpful, for example, when trying to determine the

roundness or angularity of a shape. Numbers describing shapes with smooth curves may show a

trend towards one end of the scale, while shapes with sharp angles and bends may be at the other.

Similar shapes will have similar characterizing numbers and therefore can be distinguished from

dissimilar shapes through the use of algorithms that exploit these numbers.
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1.1 Common Applications for Shape Characterization

Shape characterization is used in many fields of research and has an extensive list of application

areas. Describing objects using numbers plays a significant role in computer vision for

recognition and classification. Character recognition, face recognition and automated fingerprint

recognition are made possible through the use of shape description. Figure 1.1 illustrates a

fingerprint matching application that makes use of shape descriptors [1]. The figure uses

invariant moments to distinguish between two similar fingerprints and two different ones.

Image 1 Image 2 Image 1 Image 2

Images Match Images Do Not Match

Figure 1.1: Example of shape characterization to identify fingerprint matches.

In some recognition cases, a direct comparison with another image may not be needed as

shown in the fingerprint example above. In character recognition a database of descriptor

calculations could be stored for each letter or number. In this way any new character presented

to the algorithm could be compared to the descriptor values of each character in the database and

match itself to the most similar. By describing each possible character in terms of numbers

instead of as a reference image, computer resources including processor power and system

memory can be saved [2]. When dealing with a large database of objects, this can be extremely

helpful. In Figure 1.2 below an example of a database of descriptors being used to classify a new

3



object is shown for character recognition. For simplicity the database only has descriptors for

two characters; a and b.

Descriptor Database
Cliaracter Descriptors a b

Phi 1: 1.0292 Phi 1: 1.058 1.2377
Phi v- 9 sqQO Phi 2 ' 2 664 3 403

Phi 3: 8.917 Phi 3: 9.4284 7.8057
.. Phi 4: 14.1381 Phi 4: 14.2453 13.702

Phi 5: 29.2098 Phi 5: 29.8432 27.6783
Phi ;. 19 ;AA9f Phi 6- 16 0299 16 185

Phi 7: 29.1866 Phi 7: 29.4245 28.2324

Figure 1.2: A character being analyzed and compared to a previously calculated database.

1.2 Motivation

The need for automated shape description conventionally arises in two-dimensional imaging

applications related to computer vision. There has not been a significant need for numerical

descriptors for three-dimensional shapes - and conventional two-dimensional shape descriptors

do not readily lend themselves to compact representations in three dimensions. The situation is

even more challenging when one attempts to numerically describe the three-dimensional shapes

of a mixture of objects.

The application that is the focus of this thesis is describing the three-dimensional shapes

of particle aggregates in a sand mix, which is of considerable importance to Civil and

Environmental engineers. The shape characteristics of sand grains in a particular soil have a

large impact on the geotechnical properties of the entire mixture. The size, shape, and way sand

particles interlock with one another are all factors affecting a soils behavior when loads are

applied. There are three major categories that affect the stress-strain behavior of soils; inherent

4
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particle characteristics, geologic and environmental [3]. Figure 1.3 shows these categories and

gives examples of each.

Inherent Particle Geological Factors Environmental
Characteristics Factors

_ Hardnes _ Age, stress _
G Hardness and Specific _ history, natural Drained
Gravity Distribution cementation Loading,

monotonic

Shape and Depositional
Angularity conditions, initial Undrained Loading

relative density monotonic stress
'" d path and stress level,

Particle Size and cyclic stress path,
Size Distribution Initial mean effective stress level

normal and shear
stress levels

Figure 1.3: Factors affecting the stress-strain behavior of soil [3].

Standard techniques exist through which most of these factors can be quantified for

further examination. For instance, particle size and size distribution can be calculated using a

sieve analysis. This is when a sample of the soil is placed on a mesh screen and then is sifted

down into another screen with a smaller mesh. This process then continues and the mass

retained in each sieve is recorded. Specific gravity distribution also has well documented

techniques for calculating by measuring the displacement of water. The shape and angularity of

a particle is the only inherent particle characteristic that still needs an effective algorithm to

quantify.

The shape of sand particles affects the particle to particle interaction which is known as

the friction angle between aggregates in the mix. These friction angles determine the strength of

a sand and are extremely important when trying to understand the properties of natural soils.
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Compaction of the soil with its minimum and maximum void ratios, a measurement of the space

between the particles in a mix, are also greatly dependant on the shape of the particles [3]. For

instance, more rounded sands will typically have less compaction and lower yield strength than a

mix of soil with more jagged particles. In this way, shape information can be more important

than other inherent particle characteristics, and yet a definitive method does not exist for

calculating this feature.

The quantification of shape and angularity will enable the inter-relationship between

shape and shear strength to be determined. A qualitative understanding of the relationship

between shear strength and shape already exists; with a quantification of shape parameters a

more quantitative relationship can be obtained. Reconstruction of the particles will allow more

realistic computer models using the discrete element method to be developed. These models can

then be used to observe inter-particle contact forces and microstructure effects on shear strength,

which will enable better constitutive models to be developed.

The problem with these methods lies in the difficulty of finding valid data that provide

three-dimensional description of aggregates in a mix. Two-dimensional models have been

developed using optical microscopy observations; but they are not very accurate and are only

reliable for charting behavior trends [4]. In order to develop a more realistic model that closely

replicates actual tests, a three-dimensional model is essential. However, the information required

for developing three-dimensional models is difficult to obtain, since most existing methods

require expensive equipment and large computational resources. Figure 1.4 shows an X-ray

tomographic reconstruction of a single Melt Sand particle - the digitization and reconstruction

process for this experiment took approximately 2 hours.

6



Figure 1.4: X-ray tomography of a Melt Sand particle.

The concept of finding shape numbers to describe three-dimensional shapes is not trivial.

Instead of discretizing a flat, continuous shape, which would only require an x and y coordinate;

a z coordinate, is also necessary. By finding all three coordinates, the shape would be described

in layers, where a set of x and y coordinates would be needed for every different value of z. This

would dramatically increase the number of points required to analyze the boundary of a shape.

Since a significant number of particles from a mix would need to be observed, each with varying

three-dimensional coordinates, this technique of direct three-dimensional characterization is not

efficient. As will be discussed in this thesis, finding a two-dimensional approach for

characterizing the shapes of three-dimensional particles in a mix will be rapid, computationally

efficient and parsimonious. The imaging techniques required for developing the method will also

be inexpensive (optical microscope and digital camera). Furthermore, such a technique would

allow for the use of the extensive work already done in the area of two-dimensional shape

description.

In addition to finding descriptors to characterize different shapes of sand, the technique

must also be able to reconstruct a three-dimensional object from this data, in order to be useful

7



for the discrete element model. The reconstruction procedure must be able to combine a set of

two-dimensional projections to estimate a three-dimensional particle. Developing a method as

easy to implement as a two-dimensional characterization algorithm, but with the ability to obtain

the accuracy of a three-dimensional computer model, would be extremely helpful in soil

analysis.

1.3 Objectives, Scope and Organization of Thesis

The goal of this thesis is the design, development and validation of automated image processing

algorithms that can estimate three-dimensional shape-descriptors for particle aggregates. The

specific research objectives are:

1. The design and development of automated algorithms that can estimate three-dimensional

shape-descriptors for particle aggregates using a statistical combination of two-

dimensional shape-descriptors from multiple two-dimensional projections.

2. The demonstration of consistency, separability and uniqueness of the three-dimensional

shape-descriptor algorithm by exercising the method on a set of sand particle mixes.

3. Preliminary efforts towards the demonstration of the algorithm's ability to accurately and

repeatably construct composite three-dimensional shapes from multiple two-dimensional

shape-descriptors.

The three-dimensional shape characterization technique developed in this thesis is

exercised on 5 different aggregate mixes. A database containing a library of approximately 200-

300 two-dimensional digital images for each aggregate mixture was constructed for this purpose.

In addition, a set of X-ray tomographic reconstruction images of a single Melt Sand particle was

8



obtained for qualitative validation of the ability of the algorithm to reconstruct three-dimensional

shapes from two-dimensional projections.

This thesis is organized as follows. Chapter 1 establishes the problems associated with

three-dimensional shape characterization and describes the specific application for geomaterial

aggregates. Chapter 2 provides a survey of literature on previously established methods for two-

and three- dimensional shape characterization. Chapter 3 describes the proposed three-

dimensional shape characterization technique that is developed in this thesis. Methods proposed

for "reconstructing" a composite three-dimensional shape from two-dimensional projections are

also discussed. The experimental set up for imaging geomaterial aggregates is described in

Chapter 4. Results obtained by exercising the proposed characterization and "reconstruction"

techniques are provided. The thesis concludes in Chapter 5 by making observations about the

effectiveness of the algorithms developed and explores avenues for further improvement in

research results.

1.4 Expected Contributions

This thesis expects to demonstrate that a single set of numbers representing a composite three-

dimensional shape can be used to characterize all the varying three-dimensional shapes of similar

particles in an aggregate mix. This composite shape will be obtained by numerically describing

the two-dimensional shapes of a set of two-dimensional images of the individual particles in the

soil mixture. It is expected that the individual two-dimensional images can be used as projective

representations for arriving at the composite three-dimensional shape descriptors for all the

particles in the aggregate mix.
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CHAPTER 2: BACKGROUND

All techniques used for shape description must contain four fundamental qualities in order to be

effective [5].

Uniqueness - An algorithm's ability to distinguish between two different shapes. A set of

numbers for a particular shape should be unique to only that shape.

Parsimony - The set of numbers found for a particular shape should be as small as possible.

The fewer numbers used for description, the less susceptible the method is to

noise.

Independent - Each descriptor should be independent of the next. One descriptor should not be

based on the outcome of another.

Invariant - The descriptors should not be dependant upon the orientation of the shape.

Similar shapes should have similar descriptors even if they are rotated, translated,

or scaled versions of one another.

Although generally a good method will possess all of these qualities, special applications

may need to identify orientation as well as shape. In such cases, the invariance quality is not

desired and need not be included. All of the two dimensional techniques discussed in this

section attempt to possess all the major qualities including invariance, and wherever possible,

three additional qualities that make them more useful [5]. These qualities are listed below.

Reconstruction - Allows a shape to be reconstructed from its descriptors. This can be an

extremely useful technique for compression.

10



This is the amount of physical relationship between the descriptor and

the actual shape.

Automatic Collection - The algorithm's ability to automatically collect and analyze data.

Removes human error and makes processing quicker.

2.1 Previous Work

Table 2.1: Summary of previous techniques used to describe shape.

11

Proponents Method Explanation Application
Wentworth [6] Elongation and One of the first to characterize Used a variety of sand

Flatness, form and roundness. Opened the types including,
Roundness of field for many of the subsequent Conglomerate,
sharp comers studies Breccia, and Sandstone

Wadell [6] Sphericity First method developed to Wadell attempted to
measure the sphericity of a quantify the shape of

particle to characterize its form quartz particles
Sebestyn and "unrolling" a The concept of creating a 1-D Benson introduced this
Benson [5] closed outline function from a 2-D boundary. concept to geology

Introduced by Benson into the using a paleontology
field of geology. application

Ehrlich and Radius Introduced Fourier analysis for Used a range of
Weinberg [7] Expansion radius expansion into particles from smooth

sedimentology. to very angular
Medalia [5] Equivalent Fits an ellipse to have similar Tested on carbon black

Ellipses properties to the actual shape. aggregates for both
Does not need outline. 2-D and 3-D

Davis and Dexter Chord to Measures chord lengths between Measured irregularities
[5] Perimeter various points along an outline. of many soils

Zahn and Roskies Angular Bend Zahn and Roskies discretized an Developed method
[5] outline into a series of straight using arbitrary closed

lines and angles curved shapes.
Garboczi, Martys, Spherical A process similar to 3-D Fourier Applied to aggregates

Saleh, and Harmonics analysis, and requires 3-D used in concrete
Livingston [8, 9] information. captured using X-Rays
Sukumaran and Shape and Compares shapes to circles and Algorithms applied to
Ashmawy [10] Angularity measures their deviation. Uses a various types including

Factor mean and standard deviation of Michigan Dune,
many particles to compare Daytona Beach and a

mixes. few kinds of Ottawa.

Interpretation -



Previous work done in the field of shape description, primarily for two-dimensions, is

summarized in Table 2.1. The next section will explain the two-dimensional techniques

mentioned in Table 2.1, where only images from an optical microscope are necessary. Two of

the methods from this section are implemented in the algorithms developed later in this thesis.

The section following the two-dimensional techniques provides an explanation of two currently

used techniques for obtaining three-dimensional shape descriptors using three-dimensional data.

2.2 Two Dimensional Shape Description Techniques

There are two types of shape description categories, boundary and planar surface techniques.

Boundary techniques are only concerned with the actual boundary of the object and usually

require "unrolling" the boundary to become a one-dimensional function. Planar surface

techniques deal with the entire image and have to take special care to maintain orientation

invariance [5]. Examples of both methods are shown in the following sections.

2.2.1 Boundary Techniques

This category can be broken down into two parts, one using Fourier analysis and the other using

distributional approaches. For Fourier analysis a periodic function must be obtained from the

boundary. This method allows reconstruction, through the use of the inverse Fourier Transform,

and compression by removing the higher frequency values that hold some of the fine detail. As

long as the low frequency values, which hold the general shape information, are kept, Fourier

analysis can be a parsimonious and effective technique that offers reconstruction. The general

concept of capturing the prominent low frequencies, while eliminating the negligible higher

frequencies of the Fourier Transform is shown in Figure 2.1.
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Figure 2.1: Illustration of Fourier analysis descriptors.

Distributional approaches do not allow reconstruction, but are often easier to make

invariant to orientation, since they do not care about the sequence of the boundary. Also the

distributional approaches are usually more statistically friendly, and when attempting to find

statistical similarities in three-dimensional objects, could prove more useful. The methods of

"unrolling" the boundary and turning it into a function often can be used for both approaches [5].

The rest of this section will describe the boundary description methods and then offer possible

Fourier or distributional analyses that could be done with them.

2.2.1.1 Radius Expansion

One way to describe the boundary of an object is to use a method called radius expansion. The

purpose of this method is to find the centroid of an object and move around the border at

specified angles and calculate its distance to the border [5, 13]. The distance can be calculated in

polar coordinates, first at zero degrees, and then continually checked at certain degree intervals
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all around the border. The number of degrees between each point observed decides the

resolution of this technique.

Figure 2.2: Example of first four points observed using radius expansion.

Once the points are all obtained, a periodic function can be created and analyzed. The

major flaw in this technique is the possibility of multi-valued functions, where there are two

possible amplitudes at a specific degree [7]. This is shown in Figure 2.3.

y

x

Figure 2.3: Multi-value example of radius expansion.

Fourier series analysis can be performed effectively on this technique, as well as, a

distributional approach of finding a type of radius histogram of the shape. A distribution can be

created that keeps track of the number of times particular radius ranges occur, but will not

observe the angle they take place at and therefore will not allow reconstruction. A major flaw in
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this method is that even two dissimilar shapes can have similar distributions, such as a star and a

kidney shape. Even though they are visually very different, they both have a large number of

close and far amplitudes and could appear as the same object when only looking at its radius

distribution.

2.2.1.2 Angular Bend

Angular bend is another method that can be used by both Fourier and distribution analysis. This

technique draws a line between each discrete point of a boundary and calculates the angle at

which each must be displaced to move to the next point. Since the angle from point to point is

recorded reconstruction is possible with this method when using the Fourier series. The problem

is that it cannot be compressed by removing the higher frequencies due to the fact that all errors

are cumulative in the reconstruction. Each point relies on the accuracy of the last and often times

when the Fourier series is truncated the boundary will cross itself or not connect at the end. The

distributional approach finds a histogram of slopes, but similar to the radius distribution cannot

be used for reconstruction, since the sequence of the slopes is not recorded [5]. Figure 2.4

illustrates this technique in detail.

Figure 2.4: Example of angular bend.
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2.2.1.3 Complex Coordinates

The last method discussed for Fourier analysis uses complex values to identify the boundary.

This technique arbitrarily chooses a starting point on the boundary and then follows the shape

around the edge recording all of the points. These values are stored as x and y coordinates and

can be combined into one variable by making them complex with real and imaginary parts as

shown in the equationx+ jy. This new equation forms a periodic function describing the

boundary of the object and can be analyzed using the Fourier Transform. The greatest advantage

of this technique over the others is that the function decays more rapidly in the Fourier domain

and allows for the best compression, while maintaining good reconstruction. This technique

appears to be the most promising of all the boundary methods, when considering the qualities of

an effective shape description method discussed earlier in this section [7].

Y

x

Figure 2.5: Example of complex coordinate boundary method.

2.2.1.4 Chord to Perimeter

The chord to perimeter method can only be made a distribution and cannot be used in

conjunction with a Fourier series analysis. The objective of this technique is to compare the

shape to that of a circle. This is done by calculating the distance between two points along the

boundary, as well as, the distance of the perimeter that it encases. An example of this is shown
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in Figure 2.6, where the red line is the calculated distance between the two points and the bottom

line represents the perimeter length from one point to the other.

ennth

Figure 2.6: Example of chord to perimeter.

From these measurements, a ratio can be calculated by taking the perimeter covered

between the two points and dividing by the total perimeter. This determines the irregularity of

the boundary. Small ratios are used to measure small irregularities and as the ratio reaches one

they begin to measure large irregularities. When these values are compared with those obtained

from a circle, an asphericity spectrum can be created. The asphericity spectrum is simply a way

to measure how similar a shape is to a circle. One limitation to this is that the objects being

examined must be fairly round for the method to work properly, or else unusable results will be

obtained [5].

2.2.2 Planar Surface

This category of techniques is useful for avoiding the need to locate the boundary of an object,

since they use the entire image when processing. Often times these methods can be used to

identify texture as well as shape, which when trying to classify objects could be an extremely
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useful extra feature. The major problem with these methods is that the location of an object in a

picture could affect its calculations. In most shape description applications this could be a

detrimental flaw and must be corrected in order to design effective shape description algorithms.

2.2.2.1 Equivalent Ellipses

This technique attempts to reduce a complicated shape into an ellipse that describes it. This is

done by calculating the moments of inertia and principle axes of the object to create an

equivalent ellipse. Two factors are extracted from these ellipses; anisometry and bulkiness.

Anisometry is simply the ratio of the long to short axis and bulkiness is the ratio of the area

between the original object and its ellipse [5]. One advantage of this method is that it is easily

interpreted to physical characteristics of the shape.

Figure 2.7: An object and its equivalent ellipse.

2.2.2.2 Two-Dimensional Invariant Moments

The last shape characterization method discussed uses a combination of two-dimensional

moments. Statistical values such as mean, variance, and higher order moments can be used to

make statistically well behaved descriptors [14, 15]. Similar shapes should have similar moment
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calculations and therefore can be used for characterization. As mentioned before, techniques

such as two-dimensional moments, which deal with the entire image, are prone to errors through

scale and rotation changes. This problem was addressed in a paper written by M. K. Hu [6]. He

proposed using a combination of moments to create a set of invariant moments, which can

characterize any image using only seven numbers. The general equation for a two-dimensional

moment of a continuous function is given as:

m pq =Im 0o Ji xPyqf(x,y)dxdy (2.1)pq

where p and q represent the order of the x and y moments respectively. These moments can be

centralized by subtracting out the means, and these central moments can be written as:

p, L n (x-x {- Yf(xy)dxdy (2.2)

where p and q represent the order of the x and y moments respectively. These equations are for

continuous functions and are not useful for images, which are discrete. The equations can

simply be changed for images by summing the values over all the pixels instead of calculating

the function integrals. The new formula is shown below.

= EY (x - xY Yy -fxy) (2.3)
x y

where p and q represent the order of the x and y moments respectively. The fx,y) refers to the

image's gray level value of the pixel at each x andy. This equation shows how every pixel in the

image is used in the calculation and then they are summed to obtain the central moment. These

moments can be normalized by dividing by the zero moments raised to the power of gamma as

defined below.

pq = (2.4)
'U00
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where,

= +q +1 (2.5)
2

The use of these normalized moments lead to the creation of Hu's invariant moments.

The seven invariant moments are only shown below; a complete derivation can be found in a

paper written by Hu [16].

= 720 + 702 (2.6)

02 = ( 2 0
+ 2)2 + 4 2 (2.7)

3 = (Q30 - 3712)2 + (321 - 03) 2 (2.8)

4 = (730 + + (12) + ( +3) (2.9)

05 = (30 - 3 1 2 Xq 30 + 712 (r30 + 712)2 -3(r21 + 7o3)

+ (3721 - 1703 Xq2 + 103o)3(730 + 72)2 (721 + 703)2 (2.10)

6 = (720 -7 02) (730 + 12) -(721 + 703)2]+ 4q11(%30 + 7712 X721 + 703) (2.11)

' = (3 7 721- 703X103+ r21l)k730 + 712)2 -3(r21 + 1703) 2 ]

+ (3712 - o30 Xr21 +703)43(730 + 7l2)2 - (721 + o03)2 (2.12)

The most significant advantages of this method are its ease of implementation and its small

number of descriptors. This technique only has seven descriptors, in comparison with Fourier

analysis, which usually needs at least ten and oftentimes more. Moments are a fairly robust,

easy-to-understand technique for describing shapes.
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2.3 Three Dimensional Shape Characterization Techniques

Most algorithms for describing three dimensional shapes require the acquisition of the three

dimensional objects. In this section two previously used three-dimensional description methods

are presented and it is assumed that the coordinates of the objects being analyzed have already

been obtained using a three dimensional imaging system. The most commonly used method to

capture such objects is X-ray computed tomography. The above mentioned assumption is not a

trivial one and oftentimes acquiring models via tomography can have a great number of

problems in itself. Cost and resolution of a system, as well as, the time a reconstruction

algorithm takes to build an object are all factors that must be considered and vary depending on

the application. The two techniques being examined are spherical harmonics and three-

dimensional invariant moments. Further discussions on the usefulness and efficiency of the

algorithms presented will be noted at the end of this section.

2.3.1 Spherical Harmonics

Spherical harmonics express a shape in a more useful mathematical form [8, 9]. The ability to

characterize an object as a set of values can be extremely useful in models that oftentimes use

only spheres or ellipsoids to represent actual three dimensional shapes. As mentioned earlier,

assuming a three dimensional object has already been obtained; this technique needs to locate the

object using what is known as a "burning" algorithm by separating the background from the

object. The particles are stored in a three dimensional matrix, where each voxel (three

dimensional pixel) is represented by either a zero, for the background, or a one, for the object.

The algorithm begins by searching the matrix until a one, indicating the object, is discovered and

then find all the adjacent voxels that are also labeled as ones. All matrix values that are found to
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contain the object are stored as x, y, and z coordinates. In this way the entire object can be

captured as a sequence of coordinates.

The next task needed to be performed is to find the location of a common center point.

The centroid can be used for this and since the coordinates have already been obtained, this can

simply be done by finding the average x, y, and z coordinates by adding up the location values in

each axis and dividing by the total number of points. This center point does not need to be the

centroid and can be chosen arbitrarily, but must remain consistent for all particles.

With the center point calculated, the characterization of the boundary shape can be

performed. From the center point to the surface of the aggregate distances are measured at

specific angle intervals. Two angles are necessary to obtain adequate three dimensional data,

therefore botho, ranging from 0 to 2n, andO, ranging from 0 to t is used. Once all b angles are

obtained, 0 is incremented and all of the s angles are recalculated. When this is complete, a

r(0,0) function is created which can be used for further analysis. The equation for spherical

components is then:

r(s,)= E 'a(n,m)Y.'(0, ) (2.13)
n=O rm=-n

where Y,(0,}) is a spherical harmonic function of order (n,m) and a(n,m) is a numerical

coefficient. Orders for n are typically taken up to 20 or 30 for efficient characterization [8, 9].

2.3.2 Three-Dimensional Invariant Moments

This technique is an extension of the two-dimensional invariant moments, which are described in

the next section of two-dimensional shape descriptors. A brief overview of three-dimensional
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moments is given here to portray the concept of this technique. The equation for a three-

dimensional moment is given by,

mpqr = ||xfx^x*'Xp(xIxx 2,x 3 )dxldx2 dx3 (2.14)

where p, q, and r signify the order of the moment and p(xl, x2, x 3) represents the density of the

object. The density function is assumed to be piecewise and continuous making it bounded [11,

12]. The equation above can be converted to a central moment, by subtracting out the centroid

of the coordinates shown in the two equations below.

= |CfiTX -XI X2 -" X2r 3 -X3 ) p(xi',x2x 3)dXIdx2dx3 (2.15)

where,

XI = ,X2 I=m ,x 3 m°= (2.16)
moo mooo mooo

Finally the equation is normalized using the following equation,

l =7-pqr I-~ (2.17)
pr = p+q+r+3 (2.17)

ooo) 3

This equation can be used to generate moments of a three-dimensional object. The major

problem with this technique is the computation time required to analyze the moments. When

moments become higher in order, the equations can become very complex making their

implementation computationally expensive [11, 12].

The three-dimensional shape description techniques discussed all require the three-

dimensional data of the particle, which can be obtained through X-ray tomography. Not only do

they each rely on expensive equipment to do their analysis, but they also need significant

processor power, in order to achieve results in a reasonable amount of time. Even if such

technology is available, the specific nature of analyzing each individual grain of sand, which are
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innately different, such analysis may not be necessary. The generalization acquired by using

two-dimensional descriptors could actually yield more effective results, by using an estimation

based on statistics. Since no two sand particles are exactly alike, a statistical technique is

preferable.

2.4 Principal Component Analysis

The general concept of PCA is to exploit patterns in a set of data in way that highlights the

similarities and differences. When a dataset has many dimensions, PCA allows the most

important components of the data to be isolated, which can reduce the number of dimensions

with little loss of information. In this way, high dimensional data can be visualized in three-

dimensions when plotted in what is known as PC-space.

PCA uses the variance of a dataset to identify the most important information. The

technique assumes most of the classifying information lies along the axis with the most variance.

The first principle component is the axis with the most variance and each subsequent component

is calculated based on the axis with the next highest variance [17]. This is done by finding the

mean vector, the mean of all instances about each descriptor, and covariance matrix of the data.

The covariance matrix is calculated with the variance of the features along the main diagonal and

the covariance between each pair of variables in the other matrix positions. Eigenvalues and

eigenvectors are then computed and sorted by decreasing eigenvalues. The principal

components are the projection of the data along these eigenvectors with the largest values being

the most significant and oftentimes the smaller ones only contributing "noise". This allows the

major principal components to be extracted, therefore reducing dimensionality and increasing

separability.
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Figure 2.8 illustrates how PCA works in two dimensions. In the figure two axes are

chosen, which maximize the variance without reducing the dimensions. Later in this thesis PCA

is applied to Fourier descriptor data to reduce the coefficients to three-dimensions. Only the first

or major three axes would be chosen to represent the data, which originally has an extremely

large number of axes. The specific application of PCA used in this thesis is discussed more in

Chapter 4.

Most Significant

t

|/"" y Eigenvector

Second Most
Significant
Eigenvector

x-axis

Figure 2.8: Example of PCA in two dimensions.

This chapter summarized some of the more popular methods for obtaining shape

descriptors. Since this thesis focuses around finding a two-dimensional approach for acquiring

three-dimensional shape descriptors, complex coordinate Fourier analysis and invariant moments

were chosen to be implemented. Both a boundary and a planar surface method were chosen to

attain two different processes with varying advantages of calculating descriptors. The Fourier

method will allow reconstruction and the moments will offer a procedure, which does not require

unrolling the boundary. The following chapters will discuss how these characterization

techniques were applied in the overall procedure.
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CHAPTER 3: APPROACH

As discussed in the previous chapters, finding a relatively simple method of describing three-

dimensional shapes of soil aggregates would prove to be useful. Designing an algorithm, which

will allow particles to be characterized for use in a discrete element model, would assist in

increasing speed and accuracy of currently used models. It will also enhance the understanding

of the influence of shape on shear strength. Implementing a method that uses more common

equipment such as an optical microscope and digital camera will allow three-dimensional shape

characterization to be available for a wide range of applications. Even a database of shape

numbers calculated for common soil mixtures could be created for ubiquitous use. This chapter

presents a possible approach for solving this problem. The information offered is broken down

into four sections. The first will discuss the overall approach of the proposed technique and will

lay the groundwork for detail in the later sections. The second and third sections will elaborate

more on each two-dimensional description method being applied in the overall approach. The

final section illustrates possible methods for reconstruction and validation of the procedure. At

the end of the chapter is a summary of the approach. All the results for the techniques proposed

in this chapter will be presented in the next chapter.

3.1 Overall Approach for the Proposed Technique

The general research approach taken in this thesis consists of two major parts. The first deals

with obtaining effective shape descriptors that consistently characterize samples of sand through

the use of two-dimensional projections of different particles within the mix. This will show how

a set of similar three-dimensional particles can be described using a simpler two-dimensional

technique. The second major part attempts to validate this procedure by reconstructing a three-
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dimensional object from the two-dimensional projections. When two-dimensional projections

are taken from various angles of the newly created three-dimensional object, the descriptors

should be similar to the corresponding mix

Figure 3.1: Premise for using 2-D projections to obtain a 3-D particle.

Once the technique has been proven, the descriptors themselves could be used to create

its own projections of the mix and then applied to a reconstruction method in order to produce

many three-dimensional models. In this way, an entire dataset of three-dimensional particles

could be fabricated, that would fit the same descriptors as the actual mix. This allows a

particular type of sand to be modeled on a computer without the need of having to use three-

dimensional scans of thousands of particles to achieve an accurate representation of the soil. The

dataset could then be applied to a discrete element modeling software program, which would

allow many tests to be performed on the sand mixes that accurately represent real particles.

Figure 3.2 shows the overall approach of the proposed technique. The left side of the

figure illustrates the process of finding three-dimensional descriptors by taking the statistical

mean and variance of two-dimensional descriptors from a database of projections obtained from

a mix of sand particles. The right side of the figure shows the validation and reconstruction

portion of the procedure. A set of two-dimensional descriptors can be generated from the three-

27



2-D facets of 3-D
partiles in mix

Composite 3-
Reconstruction"

F"IerC
b~~f Id|g'n

t n2-D facets of
Composite Particle

0 1 I
0*1

_ *..l .

I
, -%

H : I
n _

*;~ ~ ~ X, f:i ; .X WA. f; . ;··;:'F t0\ ;· - a, f

__ ._-._ _ , _: __ _.4___ : -_

_ _ ' 2 :1^afY ,, 1

rwd'ww~aw'^rw'm =y^^^,^y^^*wis*^~J v . = = = = ft = = I
-2 D ) -------- ----- .--- 2-.. --

* , . .. . , I

. . .. : : :
* * . _ .* 1 , -700 1- '>0 ^, * | . | * .1 | 1 1 * '.

-_- _4- -- -- - 2 ) --- -1

a~-N DN DN'N DN:
_-___........ . 2-_ -_-------…- _- -.

2-D escriptors from Mix 3-D Descriptors 2-D Descriptors from Particle

Figure 3.2: Overall approach for proposed technique.

__ __ __ _ _ __

I

:

'

i
ll

I



dimensional characterization values and projections can be reconstructed. These projections can

be used to build a three-dimensional object that is a representative particle of the mix.

In order for the presented procedure to be successful, some minor assumptions must be

made. Every particle that is observed under the optical microscope depicts a different angle of

the composite particle. If a large number of particles are used, eventually a sufficient number of

particles should be able to represent every facet of the composite particle. In addition to this, all

particles in a given sample set should have similar shapes. This regularity of the individual sand

types is the basis for the premise.

The two-dimensional techniques used to calculate the descriptors are Fourier descriptors

and invariant moment descriptors. Fourier descriptors allow the reconstruction and validation

shown on the right side of the figure. Invariant moments are not reversible, but do offer an

additional assurance, that the soils can be separated using the two-dimensional projections. The

following two sections give more detail on each two-dimensional description procedure.

3.2 Three-Dimensional Aggregate Shape Description using Fourier Descriptors

One popular method for characterizing two-dimensional shapes is by using Fourier analysis. As

discussed in the background chapter, many methods facilitate the use of the Fourier transform in

order to describe the data. This thesis implements a method of expressing the two-dimensional

projection in terms of complex coordinates. A two-dimensional outline can be converted to a

one-dimensional function by tracing the boundary to obtain a collection of the x and y

coordinates along it. An algorithm can be written to capture this one-dimensional function and

can be plotted from the resulting x and y coordinates by plotting them as complex combination

ofx + jy.
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Since the first and last points are the same, the function is known to be periodic and

therefore suitable for Fourier analysis. In this way a two-dimensional picture of a sand particle

can be reduced to a simple one-dimensional function, which contains all the necessary shape

information for shape characterization. By transforming the one-dimensional function into the

Fourier domain, the frequencies common among the border of the sand particle will be seen.

This distinction can exploit differences in the outlines of particles in a mix. For example, a mix

of jagged particles will contain higher frequencies than a mix of rounder particles. Figure 3.3

depicts the process of converting a two-dimensional projection into a one-dimensional periodic

function.

(a)

f-\

Figure 3.3: (a) Binary image of sand particle, (b) outline of particle, (c) 1-D function of particle,
and (d) plot showing periodic nature of 1-D function.
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3.2.1 Normalization of the One-Dimensional Function

Every particle examined will have a different number of points in the function, as well as,

different Fourier amplitudes depending on the coordinate locations. In order for the Fourier

transform to be useful, each one-dimensional function must be normalized so shape is the only

factor considered. Without normalization, the size of the particle will affect the Fourier

transform and may have different coefficients. Two particles with the same shape, even if they

are different size, must have the same descriptors for the shape characterization method to be

useful.

In order to normalize the functions, they can first all be resampled to the same number of

points. This deals with finding the common coefficients between each particle. After being

resampled, all coefficients match up and each frequency descriptor can be compared to an

identical frequency in another. With the number of points in a particle no longer an issue, the

amplitude adjustments must be made so size is not a factor in the shape descriptor values. This

can simply be done by varying the original one-dimensional functions between -1 and 1. The

absolute value of the largest number can be divided through the entire function to create a new

function where all of the values are between -1 and 1. In this way, two identical particles of

different sizes can still have the exact same one-dimensional functions. Results showing the

normalization process will be described in the following chapter.

3.2.2 Using the Fourier Transform to Obtain Descriptors

With all of the data prepared as normalized one-dimensional functions, the Fourier analysis can

begin in order to obtain the shape descriptors. Once the Fourier transform is taken, each

coefficient can be considered a descriptor. The number of descriptors depends on the number of

points the one-dimensional functions are resampled to. It is not beneficial to use all the
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descriptors, because many of them are close to zero, which makes them very sensitive to subtle

changes.

The ideal set of descriptors to use lie in the middle of first half. The lower descriptors are

used for identifying general shape and are similar even among very different particles; where as

the higher descriptors are for identifying fine detail, which can be different even among very

similar particles. For these reasons it is beneficial to use the middle descriptors to characterize

different sand particle shapes.

Even after narrowing down the descriptors to use, there will still be a great number of

Fourier coefficients left. In this thesis, in order to better visualize the description and

classification process, principal component analysis (PCA) is used to reduce the number of

descriptors to only three values. PCA can take any number of values and find the most efficient

way to represent them as a smaller, more manageable number of values. It must be noted that

PCA is used to classify and observe the differences between the sand mixes, but the original

values obtained through the Fourier transform need to be used when attempting to reconstruct the

particles. Reconstruction can not take place directly from the values received from the PCA.

Later sections will discuss the reconstructions in more detail.

3.3 Three-Dimensional Aggregate Shape Description using Invariant Moment Descriptors

Two-dimensional invariant moments is a well established technique for comparing shapes.

Moments can capture the similarities and differences among various shapes. In this thesis

invariant moments are implemented to discover if diverse soil mixes are separable when using a

two-dimensional characterization technique that does not need the outline. For Fourier analysis

the outline of the particle must be acquired before the one-dimensional function can be created

and the Fourier transform can be applied. Two-dimensional moments do not require finding the
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outline and can calculate descriptors from the binary images alone. This makes calculations

quicker and offers an alternative solution to classifying soil mixtures by shape.

Invariant moments require much less preparation to implement than Fourier analysis.

Since the method is already invariant to rotation, scale, and translation, no normalization of the

projections is necessary. As discussed in detail in the background chapter, there are 7 invariant

moment descriptors. This is a much smaller number of descriptors needed to classify shape

using Fourier descriptors, making it a more parsimonious solution. The drawback of invariant

moments is the inability to reconstruct a shape based on the 7 calculated descriptors. Fourier

descriptors are needed for the reconstruction and validation attempts performed in this thesis.

Unlike Fourier analysis, PCA is not necessary when using invariant moments. Among

the 7 moments calculated, some will not be as accurate at describing shape as others. By using

PCA to reduce all 7 axes to only 3 axes may give worse results than simply choosing 3 of the

descriptors. It could be used to realign the 3 axes for better separation without reducing the

dimensions, but still may not be necessary. In this thesis, PCA was not used for the invariant

moment descriptors.

3.4 Reconstruction and Validation

One of the objectives of performing shape description is to be able to input the information into a

discrete element model. This could be achieved if three-dimensional particles could be created

from the projections, which have the same statistics as the real soil mixture. Also by

reconstructing these three-dimensional models, the overall concept of using two-dimensional

projections to characterize three-dimensional shapes can be validated. The next few subsections

discuss how more projections could be generated from the three-dimensional descriptors and

how these projections can be used to construct three-dimensional particles.
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3.4.1 Constructing Two-Dimensional Projections from the Descriptors

A database of two-dimensional projections already exists for each sand mix, but the quantity of

projections is limited. The goal is to use the descriptors, which are based on the existing dataset,

to randomly generate particles that share similar descriptors. Since each three-dimensional

descriptor has both a mean and a variance associated with it, creating two-dimensional images

becomes a matter of statistics. A random number can be generated to represent each descriptor

and can then be multiplied by the standard deviation and have its mean added to it. This will

create a set of descriptors, which will possess the same statistical characteristics of original

dataset. These new descriptors can be applied in reverse to create two-dimensional projections.

Only the Fourier descriptors will work for reconstructing two-dimensional images, since

the FFT is a reversible transform. The invariant moments cannot be used for reconstruction from

the descriptors and are only helpful in this thesis to prove the separability of different sand

mixes. With the new randomly generated Fourier descriptors, the inverse Fourier transform can

be used to create a particle from the descriptors. By varying the descriptors an entire dataset of

projection plots can be developed using the inverse Fourier transform. The plots of these

projections can be converted into images by using the coordinates to establish an outline and

using binary operations such as dilate and fill to complete the projection. The following chapter

will illustrate the capability of reconstructing the random projections from the descriptors.

3.4.2 Three-Dimensional Object Construction from Two-Dimensional Projections

The final task to complete the reverse process is to construct a synthetic representative particle

from the projections. This can be done from the original database of images taken from the

optical microscope or from random projections generated using the procedure described above.

By using different projections to assemble multiple three-dimensional particles, a variety of
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varying particles can be created. All of the particles will have similar characteristics, but will be

unique. In this way a realistic model can be established of an actual sand mix. The following

subsections present three techniques for three-dimensional object construction from two-

dimensional projections.

3.4.2.1 Extrusion Reconstruction Method

This technique uses extrusion to give an artificial thickness to the projections used in the

reconstruction. The extrusion will convert a two-dimensional projection into a three-dimensional

object. Combining several of these extruded projections together will result in a particle-like

object, which contains some elements of all projections used. Figure 3.4 shows the extrusion

process.

Figure 3.4: (a) Original projection and (b) extruded into 3-D space.
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Different projections can be extruded along particular planes such as the x, y, and z

planes. By placing the projections on different planes the result will cause them to intersect. A

combination of these intersections could be used to find a particle. The common points shared

between the projections could be used or even average points that are shared by most of the

objects but not necessarily all of them. A good technique would be to apply many particles at a

variety of angles to obtain the three-dimensional object. Results of this technique are shown in

the following chapter.

3.4.2.2 Three-Dimensional Rotation Reconstruction Method

This method rotates the projection into three-dimensional space. The concept behind this

approach lies in the fact that the orientation of each projection is unknown; therefore the rotation

of the projection will allow it to represent all sides of the three-dimensional particle. By rotating

a variety of these projections and averaging them together, a representative reconstruction of all

of the two-dimensional images can be obtained. Figure 3.5 illustrates the basis for this method.
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Figure 3.5: (a) Original projection and (b) rotated into 3-D Space.
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The rotation could be done to a multitude of particles and averaged together to produce a

three-dimensional particle. The different rotations could be done about different axes; not just

the y-axis, which is shown in Figure 3.5. The various results obtained for this method can be

found in the next chapter.

3.4.2.3 Tomographic Reconstruction Method

Tomographic reconstruction uses a procedure where each projection is treated as a flat object in

three-dimensional space. This means each two-dimensional image is placed into three-

dimensional space and rotated at different angles. The easiest way to describe this technique is

through the following two figures.

Figure 3.6: Two projections inserted into 3-D space at a 90° angle of each other.

In Figure 3.6 and 3.7 there are only two projections being used and are places at 90

degree angels of each other. This can be elaborated to as many projections at as many angles as

necessary to represent the sand particle. Also, the projections can be rotated around other axes as
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Figure 3.7: (a, b) Two images used to create Figure 3.6 and (c, d) alternative perspectives of
Figure 3.6 to show how the images intersect.

well and blended together. Once all of the two-dimensional images are placed in the three-

dimensional space, the entire object can be smoothed and with enough angles can look like an

actual sand particle. This technique is the most promising of the three reconstruction procedures.

The results displaying the effectiveness of this reconstruction method are in the next chapter.

3.5 Summary of Approach

This chapter details the approach taken to solve the shape characterization problem for soil

aggregates. The approach discussed offers the ease of a two-dimensional implementation

matched with the accuracy obtained from a three-dimensional description method. This will

allow soil mixtures to be analyzed without the necessity of scanning individual grains of sand

into a three-dimensional imaging system. The technique gives unique, parsimonious, and
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invariant descriptors, which permit reconstruction and automatic collection. The following

chapter will present results displaying the successfulness of the approach at classifying and

reconstructing three-dimensional aggregates from two-dimensional projections.
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CHAPTER 4: RESULTS

This section will show the developments made to obtain the desired results and each step taken

to achieve them. First, the experimental setup and preparation algorithms will be shown to

explain how the two-dimensional images of the sand particles were converted into shape profiles

of the aggregates. Results from the normalization methods used to isolate the shape from size

will demonstrate the necessity of normalization. Classification results will be presented, which

show the uniqueness of the descriptors for both Fourier analysis and invariant moments. The last

section of this chapter will discuss the feasibility of reconstructing three-dimensional objects

from the two-dimensional projections, as well as, reconstructing more two-dimensional

projections from the descriptors themselves.

4.1 Experimental Setup

Before any shape description can take place a certain amount of preparation is required. Each

soil mixture was scattered under an optical microscope and two-dimensional pictures were taken

of various particles in the mix. Since the particles are three-dimensional, false contours are

created inside the flat two-dimensional projections. All that is needed is a binary image, where

black is the background and white is the object. In order for the two-dimensional shape

techniques to work effectively the projections must be filled as well with the entire inside of the

outline being white. This section explains detail on the collection of the sand projections and the

preprocessing done to the original images.

4.1.1 Laboratory Setup

As previously mentioned, the main objective is to calculate shape descriptors, which describe

three-dimensional shapes using two-dimensional projections. The first thing needed to start this
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process was the two-dimensional projections of the various sand mixes. This was done on an

ordinary optical microscope, the Nikon Eclipse TS-100, which is shown in Figure 4.1.

Figure 4.1: Nikon Eclipse TS-100 optical microscope used for data collection.

These projections were simply two-dimensional digital images of different particles

within each mix. For each type of sand mix a large number of images were taken and used to

generate the average descriptors for each sample set. Some typical images used are shown in

Figure 4.2. The sands that we used included; #1 Dry Sand, Melt Sand, Daytona Beach Sand,

Michigan Dune Sand, and Glass Beads. The #1 Dry and the Melt Sand are very similar sands

that have many of the same properties, where Michigan Dune and Daytona Beach Sand are

unique and have different tested parameters from the other mixes. The glass bead was used in

the analysis as a standard reference in order to help show the algorithms effectiveness in

identifying similar shapes.
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(c)

Figure 4.2: Example of sand images used for the analysis: (a) #1 Dry Sand, (b) Daytona Beach
Sand, and (c) Glass Beads.

The following sections illustrate the effectiveness of the shape descriptors used in this

thesis. All descriptors are modeled using a Normal distribution and the mean and variance for

the individual descriptors in a mix are calculated.

All of the characterization results were obtained using 382 #1 Dry Sand, 391 Melt Sand,

299 Daytona Beach Sand, 193 Michigan Dune Sand, and 25 Glass Bead particles. The glass

beads did not require as many samples since the variance between projections is extremely low.

4.1.2 Image Pre-Processing

Before any analysis can begin on the two-dimensional projections, some preparation must be

performed on the images. The focus of each picture of sand taken from the digital camera is the

outline of the particle itself. Therefore code must be written to take the original RGB image and
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convert it a one-dimensional periodic function. Each image must be subjected to a series of

procedures to remove any extraneous objects, so the sand particle of interest is the only object

left in the image. This is mostly done by converting the image to binary and using simplistic

binary operations to perform further processing.

In Figure 4.3, the original raw image file taken directly from the microscope is shown.

This image was taken with a green filter, which reduced glare and light shining through the

particle. As can be seen in the image, the actual particle of interest is surrounded by sand

fragments and even another particle can be seen touching the left border of the image. Before

this sand particle can be of any use in discovering shape descriptors, the image must be cleaned

up and the particle itself made the focus of the image.

Figure 4.3: Original raw image taken from microscope.
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Since only the shape is needed from the image, a silhouette of object can be obtained,

which will remove some of the irrelevant information, such as texture. The conversion to binary

will make all of the lighter colors equal to one and the darker colors equal to zero. The problem

with this is that the object of interest becomes black, while the background turns white. In

MATLAB most binary operations are performed assuming the white pixels are important and the

black pixels are not. For this reason, the image was inverted to make the particle white and the

background black, which made further MATLAB processing easier. Figure 4.4 shows the

converted binary image and the inversion of the image used throughout the rest of the

processing.

(a) (b)

Figure 4.4: (a) Original binary image and (b) inverted binary image for processing.

With the entire image now being represented by zeros and ones, the removal of

insignificant objects in the image, becomes much easier. The particle touching the left border

can be easily removed in MATLAB using the imclearborder function, which eliminates

any connected pixels touching the border. The tiny crushed sand pieces lying all around the

main particle can be cleaned up, by finding all of the connected pixels in image and removing
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them all except the largest one. In every case, the object of interest should be the largest object

in the image and everything else should be taken away. The last thing needed to be done to the

binary image is to fill the holes appearing inside the object. Since eventually edge detection

must be performed on the image, filling the holes will prevent false or irrelevant edges from

being detected. This is easily done using imfill, which changes to white any black pixels

completely surrounded by white pixels. Figure 4.5 below displays the clean binary image and

the image after being filled.

(a) (b)

Figure 4.5: (a) Binary image after removal of extraneous objects and (b) with holes filled.

The last procedure performed on the images is the centering of the particle of interest.

This can be done in various ways, but the method best suiting this application was to center the

object about its centroid. Centroid centering the object placed a majority of the particle in the

center regardless of its shape, unlike x and y limit techniques, which could cause the center of

mass to be weighted heavily toward one side. For the Fourier analysis and invariant moments,

this may have not been necessary, however later for attempted reconstructions centering the

particle was essential. Figure 4.6 is the final clean and centered image.
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Figure 4.6: Final processed image.

4.2 Results of Shape Characterization using Fourier Descriptors

When trying to find the Fourier descriptors of shape, the outline of that particle must be

transformed into a periodic one-dimensional function. In order to obtain the outline, the edge

detection algorithm can be used in MATLAB to receive the particles boundary. The figure

below shows the edge detected image of a particle of sand.

Figure 4.7: Edge detected image of a sand particle.
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Obtaining the one-dimensional function from the outline can be achieved by choosing a

starting point on the border and following around the edge. The function must be created from

pixels in sequential order to attain the periodicity required for Fourier analysis. The starting

point was arbitrarily chosen as the pixel directly to the right of the centroid. The boundary was

traced by discovering m-connected pixels from the starting point. Each pixel was recorded

before moving on to the next connected pixel, until the starting point was reached again. Since

the tracing algorithm works based on connectivity, the preprocessing used to create the unbroken

boundary is extremely important. With the entire set of x and y values obtained, the function can

be plotted as shown in Figure 4.8.

Figure 4.8: Plot of x and y coordinates obtained by tracing the edge.

The one-dimensional function formed by adding x + j x y is the periodic signal needed to

complete the Fourier analysis. Figure 4.9 shows a plot of this function, where the x axis simply
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Figure 4.9: One-dimensional function representing the shape profile.

represents the number of points located along the boundary. The Fourier descriptors can be

taken from this function, through the use of the Fast Fourier Transform (FFT). The descriptors

are simply equal to the coefficients obtained when performing the transform. The figure below

is a plot of the first 40 FFT coefficients of the function shown in Figure 4.10.

The inverse FFT can be used to reconstruct the original image from its FFT coefficients

as shown in Figure 4.11. The next section will show how the higher coefficients, which are

extremely small, can be set to zero and still maintain good reconstruction. This will prove useful

later, when trying to compare similar shapes.
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Figure 4.10: Fast Fourier transform of the one-dimensional function.

Figure 4.11: Reconstruction of the original shape using the inverse FFT.
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4.2.1 Reconstruction using Fewer Coefficients

This section proves that not all the Fourier descriptors are needed to describe the shape of a sand

particle. By showing how fewer coefficients can be used to obtain similar reconstructions, it

proves fewer descriptors can be used to still adequately describe the shape. Also the higher

coefficients have small near zero values, which makes them very sensitive to noise. Anomalies

in the surface of the sand particle may lead undesired values at higher frequencies that may not

necessarily describe the shape. The lower frequencies are, in general describe the general shape

of the particle. Figure 4.12 shows an FFT where only twenty descriptors were used.

Figure 4.12: FFT with coefficients higher than 20 set to zero.
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Figure 4.13: Reconstruction of sand particle with 20 descriptors.

4.2.2 Normalization

As discussed in the previous chapter, it is important to isolate shape in the descriptors. The

functions must be normalized in order not to be influenced by size characteristics. This study is

meant to be based on shape alone.

(a) (b)

Figure 4.14: (a) Original image and (b) half-sized image.
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The following set of results shows the normalization process, with the original image in

the left column and the same particle at half the size in the right. Figure 4.15 (a) and (b) show a

plot of the x values obtained by tracing the boundary of the function. As can be seen, they are

similar in behavior, but at different amplitude values. Also the two plots have a different number

of points, with the smaller one having about half as many as the larger particle. Figure 4.15 (c)

and (d), illustrate that the FFT of these two functions are different. The mean squared error

between the two FFT plots is 7.6 x 107. Since the two shapes are the same, the FFTs need to be

identical for this type of method to be effective.

I a I n I

(c) (a)
Figure 4.15: Plot ofx coordinate values (a) original and (b) half-sized; FFT (c) original and (d)

half sized.
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The inconsistency in the FFT plots originates in the coordinate plots. If these plots are

normalized to the same scale, the two should have similar FFTs. The first problem to fix is the

amplitudes of the coordinate functions. This can be done by varying them between -1 and 1 as

shown in Figure 4.16. After this process the two FFTs become more similar, but are still not

quite the same. The mean squared error between the FFT plots is reduced to 28.7.

Ia i in

kc)

Figure 4.16: Plot of x coordinate values after normalization (a) original and (b) half sized; FFT
after normalization (c) original and (d) half sized.

The plot can now be resampled to the same number of points. This should make them the

exactly same function in both behavior and scaling. With both plots having similar scaling, the

only factor, which will affect the FFT, is the actual shape. Therefore, as shown in Figure 4.17,
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two particles with similar shape will obtain similar descriptors from the FFT's. The mean

squared error between the FFT plots after normalization and resampling is .044, which is

dramatically lower than the original error.

(a) (b)

Figure 4.17: FFT after normalization and resampling (a) original and (b) half-sized.

In the following results all of the one-dimensional functions representing the two-

dimensional projections were normalized and resampled to 128 points. As shown previously,

this eliminates the size dependence on the descriptors and ensures all of the FFT's are directly

relatable. This means for example, the first coefficient corresponds to the same descriptor in all

of the two-dimensional projections in the database.

4.2.3 Statistics of Fourier Shape Descriptors

After the descriptors have been calculated, their distributions can be plotted. The following

figures show the histograms of a few of the descriptors used to generate the Fourier analysis

characterization results. Not all the descriptors are shown; only the 4th and 23rd of the 26

descriptors used in the later results for each mix are displayed. This allows a statistical look at

both a low and high descriptor.
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(a) to)

Figure 4.18: #1 Dry Sand histogram of Fourier descriptors (a) 4t and (b) 23rd.

(a) (b)

Figure 4.19: Melt Sand histogram of Fourier descriptors (a) 4t and (b) 23rd .
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(a) (b)

Figure 4.20: Daytona Beach Sand histogram of Fourier descriptors (a) 4th and (b) 23d.

Figure 4.21: Michigan Dune Sand histogram of Fouier descriptors (a) and (b) 23 d.
Figure 4.21: Michigan Dune Sand histogram of Fourier descriptors (a) 4h and (b) 23d".
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4.2.4 Classification Results using Fourier Descriptors

Figure 4.22 was created as a way of visualizing the data in three dimensions, however it is

important to understand it is not necessary to only use three dimensions. In fact, 26 descriptors,

or features, were actually used and PCA was applied to reduce them to three dimensions. More

or possibly fewer dimensions could be used to help classify this data.

.For every projection, 128 descriptors were obtained and then each descriptor was

averaged over all of the projections. This provided information about the average descriptor for

each type of sand. As discussed in the previous chapter, only the middle of the first half of the

FFT, where most of the distinctive information lies, was used to classify the soil. Of these

values, 26 descriptors were chosen to attempt the classification of the different sand types. In the

figures below, ellipsoids are used to represent the data after being reduced to three dimensions

using PCA.

The center of each ellipsoid is determined by the averages of the three descriptors over all

of the samples. Once each descriptor is averaged, three numbers are obtained and used as the x,

y, and z coordinate for the center of the ellipsoid. The radius is determined by the variance of

descriptors. With the variance calculated throughout all of the samples for the three descriptors

x, y, and z radii are established. Figure 4.22 illustrates graphically the construction of the

ellipsoids.

Figure 4.23 has no axis labels, because they are irrelevant and have no physical meaning.

Since PCA was implemented to reduce the data from 26 to 3 dimensions, the values of the axes

do not directly relate to the descriptor values. The plot by itself however gives no real insight on

how separable the different sands are, because it offers no valid reference. The space between

the different ellipsoids could be very small and may only appear separable. A method to test the
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Figure 4.22: Ellipsoid model for depicting results.
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Figure 4.23: Ellipsoid plot showing separation of sand particles using Fourier descriptors.
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separability would be to introduce more samples of each sand mix and plot them separately.

This was simulated by splitting the main datasets in half to make two smaller data sets of each

sand mix. In order to ensure consistency throughout the sets, the samples are randomly chosen

to be placed in either the first or second set, instead of simply using the first half as one set and

the second as another. The following figure shows these results.
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Figure 4.24: Ellipsoid plot using two datasets for each sand mix using Fourier descriptors.

Figure 4.24 shows, if an unknown dataset was placed into the algorithm with the known

samples it would most likely be able to be classified. The similar shapes are grouped close to

one another proving the effectiveness of the shape descriptors. The final chapter will discuss

more on the impacts of these results.
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4.3 Results of Shape Characterization using Invariant Moment Descriptors

Invariant moments are designed to identify similar shapes, regardless of its size or orientation.

In order to ensure the invariant moment algorithm works properly, tests were run on shapes alone

and the descriptors were compared. The following results show two examples of sand

projections. The first two shapes are the same; however one is a rotated and scaled version of

the other. The second example shows to dissimilar shapes. The results are documented in tables

corresponding to the invariant moment.

Figure 4.25: Two identical shapes at different orientations and scales.

Table 4.1: Comparison between Invariant Moments of Images in Figure 4.25

Invariant Moments Image 1 Image 2 % Difference

01 ^7.1164 7.1176 0.0168

-2 15.2953 15.3027 0.0483

03 12.4116 12.1704 1.9434

04 25.1942 25.2073 0.0516

05 50.3498 49.0710 2.5398

06 32.9973 33.0157 0.0557

07 50.7640 50.7842 0.0398
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Figure 4.26: Two dissimilar shapes.

Table 4.2: Comparison between Invariant Moments of Images in Figure 4.26

Invariant Moments Image 1 Image 2 % Difference

01 7.1164 7.2694 2.1494

02 15.2953 16.7749 9.6736

03 12.4116 17.4857 40.8822

04 25.1942 26.9251 6.8702

05 50.3498 52.5509 4.3717
06 32.9973 35.5863 7.8463

07 50.7640 52.5528 3.5237

These results clearly illustrate the effectiveness of invariant moments in identifying

similar shapes. Table 4.1 has a mean squared error of 0.242 between the two images and the

highest percent difference is only about 2.5%. Table 4.2 on the other hand had a mean squared

error of 6.529 between the images and the highest percent difference was over 40%. This proves

the moment technique works in detecting dissimilar images and can be applied as shape

descriptors.
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4.3.1 Statistics of Invariant Moment Shape Descriptors

The invariant moment histograms are also helpful to plot, since again a mean and a variance is

used to classify the sand mixes. For invariant moments however, the process is not used in

reverse to obtain reconstructions. This takes away some of the significance of the histograms,

because random descriptors do not need to be generated from the statistics of the real descriptors.

Well-behaved statistics are much more important for the reversible Fourier descriptors. The

following figures display the histograms of the 1st and 3 d invariant moments.

(a) (b)

Figure 4.27: #1 Dry Sand histogram of invariant moments (a) 1st and (b) 3rd.
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(a) (b)

Figure 4.28: Melt Sand histogram of invariant moments (a) 1lt and (b) 3rd.

(a) (b)

Figure 4.29: Daytona Beach Sand histogram of invariant moments (a) 1"t and (b) 3rd.
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(a) (b)
Figure 4.30: Michigan Dune Sand histogram of invariant moments (a) 1st and (b) 3rd.

43.2 Classification Results using Invariant Moment Descriptors

The next set of results displays the use of invariant moments on the same database of particle

projections used for the Fourier descriptors in Figures 4.23 and 4.24. Again for visualization

purposes, only the three moments were plotted to give three dimensional ellipsoids as explained

in Figure 4.22. The average 0j, 02, and 03 values calculated throughout all the projections were

used as x, y, and z coordinates respectively for the center of each ellipsoid. The variances of the

moments were used as the radii for each ellipsoid. Figure 4.31 plots the results.

Similar to the Fourier descriptors, it is more meaningful to plot two sets of each sand mix

to better demonstrate the effectiveness of the descriptors. Each dataset was randomly divided

into two sets and plotted again in Figure 4.32.
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Figure 4.31: Ellipsoid plot showing separation of sand particles using invariant moments.

Figure 4.32: Ellipsoid plot using two datasets for each sand mix using invariant moments.
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These results show the difficulty in separating the Dry and Melt Sand, which have similar

shapes. The most notable conclusion attained from the invariant moment results is that the first

moment is the only effective descriptor. For the most part the results are separable, but only the

first descriptor is needed for the separation. Other than the glass bead, all four sand mixes lie on

the same plane for the second and the third moments. This means the same separable results

could have been obtained in one dimension using only the first descriptor.

Although the invariant moment results do not appear to be as effective as the Fourier

descriptors, they offer some validation for describing shapes using two-dimensional projections.

It is encouraging that both results offer similar findings by being able to separate most particle

mixes, which vary in shape. The next step is to try and reconstruct a three-dimensional object

using the two-dimensional projections, in order to validate that the two-dimensional projections

are a realistic representation of the actual three-dimensional shape.

4.4 Reconstruction and Validation

This section gives the results for three possible reconstruction methods, which can be used to

validate the approach and analyze three-dimensional particles. A comparison between the

methods is discussed at the end.

4.4.1 Two Dimensional Reconstructions from Descriptors

The ability to generate random projections is necessary to create models of actual sand particles

without actually scanning every particle. By finding the average descriptors of the mix, an

infinite number of projections can be created, with the same statistical characteristics as the

original projections. Below is a comparison of two original images and their reconstructed

projections. This reinforces the effectiveness of the reconstruction.
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(a) (b)

Figure 4.33: Example of FFT reconstruction effectiveness; (a) original and (b) reconstructed.

Figure 4.34: Randomly generated reconstructions.
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To prove the effectiveness of these particles an ellipsoid plot was also created for a

database of generated projections. The plot illustrates the difference between the original and

synthetic databases. Since the statistics should be generally the same, little difference is

expected from the ellipsoids. Figure 4.35 is a plot of the ellipsoids from the generated

projections.

Figure 4.35: Ellipsoid plot of descriptor generated projections using Fourier descriptors.

Figure 4.36 compares the synthetic projections to the original database. Ellipsoids with a

one in the middle represent the original dataset, while ellipsoids with a two in the middle

represent the generated projection sets.
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Figure 4.36: Comparison plot between (1) original dataset and (2) generated projections.

4.4.2 Three-Dimensional Reconstruction from Two-Dimensional Projections

Three different techniques for performing this task were attempted with varying degrees of

success. This section will show the results of the three different techniques, starting with most

easily implemented and ending with the most promising method. The finished three-dimensional

representation of the particle will be shown first and then ellipsoid plots will be created to

evaluate the algorithms effectiveness. All algorithms were tested using projections from the

original #1 Dry Sand database.
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4.4.2.1 Extrusion Reconstruction Method

X-Z Plane Y-Z Plane X-Y Plane

Figure 4.37: Projections used for reconstruction with Extrusion Method.

Figure 4.38: (a) View of projection placement prior to extrusion; (b, c, d) different angles of top
left image to emphasize each projection used.
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Figure 4.39: Projections after each one has been extruded into 3-D space.

Figure 4.40: Final reconstruction of Dry Sand particle using values shared by most of the
projections.
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r lgure 4.41: tllipsoia plot testing extrusion metnoa.

The results for this method only use three images extruded along three perpendicular

axes. Figure 4.37 shows the three projections used and Figures 4.38 and 4.39 illustrate how they

are placed into three-dimensional space and extruded. The final reconstructed particle in Figure

4.40 is a representation of where at least two of the three projections intersect. Figure 4.41 is a

comparison between the original database and projections obtained from the three-dimensional

object in Figure 4.40. More than three images and axes could be used to develop a more

sophisticated model.

4.4.2.2 Rotate into Three-Dimensional Space Method

Rather than stretching the projections, this technique rotates the objects into three-dimensional

space. This causes the result to be more of a rounded shape when generating a reconstructed

72



particle from points shared by a majority of the projections. Figure 4.42 displays a combination

of a reconstructed particle about two perpendicular axes. Figure 4.43 compares these results to

the original database.

Figure 4.42: Reconstruction of Dry Sand particle using rotation into 3-D method by rotating
about 2 axes.
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Figure 4.43: Ellipsoid plot testing rotation into 3-D space method.

4.4.2.3 Tomographic Method

With each projection being placed into three-dimensional space, rotated and combined at the

images centroid, this is the most promising reconstruction method. The reconstruction shown in

Figure 4.44 and 4.45 use 180 projections at one degree intervals. The first is rotated around the

X-axis and the second around the Y-axis. These can be used alone or could possibly be

combined and averaged together. Results on the comparisons with the original databases are

shown in Figure 4.46 for the X-axis rotation.
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Figure 4.44: Tomographic reconstruction of Dry Sand particle with projection rotation only

Figure 4.45: Tomographic reconstruction of Dry Sand particle with projection rotation only
about the Y-axis.
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Figure 4.46: Ellipsoid plot testing tomographic method about X-axis only

Table 4.3 shows the inter-ellipsoid distance between each reconstruction ellipsoid to all

of the ellipsoids of the various soil mixtures. The values illustrate the proximity of each of

reconstruction method in relationship to the other ellipsoids. The actual values cannot be

compared from one method to another. Only within each method are the distances relevant.

Figure 4.47: Illustration of inter-ellipsoid distance.
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Table 4.3: Results of reconstructed particle ellipsoids compared with original ellipsoids

Reconstruction Method Inter-ellipsoid Distance
Dry Melt Daytona Beach Michigan Dune

Extrusion .1505 .1899 .4778 .2225

3-D Rotation .2937 .3549 .4798 .0800

Tomographic .2976 .2163 .6619 .5556

4.5 Discussion of Results

The statistical two-dimensional approach to solving the three-dimensional problem shows a lot

of promise based on the results of this section. The statistics of the descriptors illustrated in

Figures 4.18-4.21 and 4.27-4.30 prove that the values obtained for the projections follow closely

to a Normal Gaussian distribution. Determining all the descriptors follow a normal distribution

ensure there is regularity to the particle descriptors, which makes them vary in a predictable

manner around the mean. This gives confidence to the concept of using the mean and variance

of the projections to calculate the three-dimensional descriptors.

Classification of the various sand mixes using Fourier analysis depicted by the ellipsoid

plots in Figures 4.23 and 4.24 appear to perform as predicted. The dissimilar shapes were easily

separated, while the #1 Dry and Melt Sand, which have similar shapes, were not as successful.

This shows the effectiveness of the algorithm at distinguishing between very different shapes,

but indicates an area of the procedure that could be improved. Since the objective is to

characterize shape that influences soil mixture properties however, #1 Dry and Melt Sand may

not need to be separated by this approach. Most of the physical behavior of the sand mixes is

also similar and therefore, they could be classified together.

Invariant moment descriptors also successfully separated the collection of soil mixtures,

but only seem to use the first moment. By looking at the ellipsoid plots in Figures 4.31 and 4.32,
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it can be seen that they are only able to be classified along the first descriptor. The other

descriptors are no help to the result. This does prove however that the three-dimensional

particles of the sand mixes can be classified using only two-dimensional methods on their two-

dimensional projections. This reinforces the results discovered using Fourier analysis.

The final results generated, dealt with the feasibility of using different techniques to

create three-dimensional particles from the two-dimensional projections. In Figure 4.34

randomly generated projections of the sand mixes from their descriptors is shown. The ellipsoid

plots of 4.35 and 4.36 show their ability to be separated and how they match up with the original

projections. These figures illustrate how it can be possible to construct a database of new

projections from the three-dimensional descriptors. The projections can be used to reconstruct

three-dimensional particles.

The three-dimensional reconstruction algorithms are presented with preliminary results.

The results for the extrusion method shown in Figure 4.41 demonstrate the possible effectiveness

of this approach, but more work needs to be done to cover more than three axes. The second

method is not likely to be a successful technique for reconstruction. The results shown in Figure

4.43 plot the synthetic particle closer to Michigan Dune than to #1 Dry Sand. All the projections

rotated and averaged together give a final particle that is too round, because of the smoothness of

the rotations. Of the three methods reviewed for reconstructing a representative particle, the

tomographic method shows the most promise. The final results compared in Table 4.3 are

similar with those of the extrusion method, but the tomographic technique is more appropriate.

The extrusion method only uses 3 of the projections to generate the model, where the

tomographic method uses 180. This means the tomographic method incorporates a better

estimate of the statistics of the aggregate mix than the extrusion method. More work can be done
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on both these methods to determine the more efficient technique. The next chapter discusses this

and other recommendations for future work. The chapter also summarizes the objectives met

and the contributions made.
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CHAPTER 5: CONCLUSIONS

Unlike shape description in two-dimensions, the three-dimensional counterpart is more complex

both in terms of approach and implementation. The situation is even more challenging when it

comes to describing the three-dimensional shapes of particles in aggregate mixes such as small

grains of sand. This thesis has attempted to address this challenge by subdividing the problem

into a judicious combination of simple techniques - two-dimensional shape description, feature

extraction, statistical modeling and projective reconstruction. This is a powerful concept which

will enable experts to model entire sets of three-dimensional sand mixes with only a few set of

numbers. These numbers are even easy to obtain for new mixes of sand with very little

equipment; an optical microscope and a digital camera.

Currently researchers model three-dimensional sand particles using a series of

overlapping spheres. It is very difficult to even know how to use the spheres to model a

collection of sand particles, since there could be millions of grains of sand in a single test. If

three-dimensional models could be created, which share similar characteristics to actual sand

projections in a mix, then real data from the sand particles could easily be implemented in

computer models. This will greatly increase the effectiveness of computer tests at modeling real

stress-strain behavior in soils.

5.1 Summary of Accomplishments

The principal accomplishments in this research work are:

1. The design and development of automated algorithms that can estimate three-dimensional

shape-descriptors for particle aggregates using a statistical combination of two-

dimensional shape-descriptors from multiple two-dimensional projections. In particular,

the use of Fourier descriptors and invariant moments were investigated for this purpose.
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The corresponding two-dimensional descriptors from multiple particles were modeled as

normal probability distributions.

2. A database containing a library of approximately 200-300 two-dimensional digital

images for 5 aggregate mixtures was constructed. The three-dimensional shape-descriptor

algorithm was exercised each of these aggregate mixes. Principal component analysis

was performed to extract features from the two-dimensional descriptors and an ellipsoid

model was used to demonstrate the consistency, separability and uniqueness of the

algorithm.

3. Preliminary efforts were made to demonstrate the algorithm's ability to accurately and

repeatably construct composite three-dimensional shapes from multiple two-dimensional

shape-descriptors. Three methods were investigated - extrusion, rotation and

tomographic reconstruction.

5.2 Conclusions

Three-dimensional shapes are complex and require sophisticated equipment to characterize

properly. The concept of applying two-dimensional techniques to estimate the solution of a

three-dimensional problem, offers a powerful and simplistic method of describing shape. In this

thesis, an automated algorithm was designed to calculate three-dimensional shape descriptors

using a combination of two-dimensional shape descriptors from multiple two-dimensional

projections. The algorithm could effectively separate mixes of sand with different shapes to an

acceptable degree of success. Based on previously used methods for obtaining three-

dimensional shape descriptors, the procedure performed in this thesis is simple and requires little

equipment.
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In addition to proving its ability to distinguish differently shaped sand particles from one

another, the developed algorithm allows for random three-dimensional reconstructions to be

generated from the projections. As discussed earlier, this allows for the creation of an entire

database of sand mix particles, which actually models the real aggregates. This reconstruction

also helps validate the three-dimensional descriptors by proving that a three-dimensional object

can be characterized by its two-dimensional projections.

These accomplishments make an important contribution to three-dimensional shape

characterization. This thesis explores the possibility of using simple methods to achieve a

complicated goal. The work done in this thesis is only the first step in completing a fully

functional and effective shape descriptor and reconstruction algorithm. This work proves the

usefulness and feasibility of a technique using two-dimensional projections to estimate three-

dimensional descriptors and to construct more projections from those descriptors. More research

and development, which could be explored to further this work is shown in the next section.

5.3 Recommendations for Future Work

As with almost any work, there is room for improvement of the algorithms in this thesis and for

entirely new algorithms to be designed. This section will discuss a few of the advancements,

which can be made directly following on the work already been done.

The first task completed in this thesis was the creation of an algorithm to obtain three-

dimensional descriptors and to show the separability between differently shaped sand mixes.

This technique could be tried different ways by using different numbers of Fourier coefficients or

more importantly discovering the most descriptive coefficients. More or less than the twenty-six

descriptors used in this thesis may be proven to produce a greater separability. In addition to

this, PCA was used to reduce the dimensionality to three, which may not be necessary. Better
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results may be obtained from separating at higher dimensions rather than reducing them. These

improvements are minor and attempt to achieve better results than techniques, which are already

fairly effective.

A large improvement can be discovered by more work being done in reconstructing

three-dimensional objects from two-dimensional projections. In this thesis, three techniques

were presented for the purpose of advancement in this area. Any of the methods performed may

offer an effective way of reconstructing sand particles from a mix. Significant work can be done

on any of them, such as providing more angles or projections, which could offer better results

than the preliminary ones obtained at the end of Chapter 4.

Shape description of particles in a sand mix can be extremely useful in stress-stain soil

behavior. With the work done in this thesis and future work accomplished to perfect a

reconstruction algorithm, the computer modeling of soil mixes can be greatly improved. This

can increase the accuracy of computer models, which will decrease the necessity to perform the

tests on real mixes. The computer models are more preferable, because they allow quick

changes, take less time to run, and can be incorporated into full-scale models. Three-

dimensional shape characterization of soil particles can assist in understanding how shape affects

soil behavior and in the future might be used to create stronger materials, which will waste fewer

resources.

The algorithms developed in this thesis have the potential for other applications where

three-dimensional shape characterization for aggregate mixes is important. For example, the

adherence properties of toner particles in photocopying and laser printing applications are

critically dependent on their shape characteristics [18]. Another application may exist in

industrial products that consist of powders. These materials often depend on shape and size
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distribution in both processing and storage, including properties such as flow rate of the particles

[19]. The methods developed in this research work show considerable promise for addressing

these diverse applications in future.

84



References

1. M. Zribi, "Description of three-dimensional gray-level objects by the harmonic analysis
approach," Pattern Recognition Letters, vol.23, pp. 235-243, 2002.

2. C. Wilson, "Evaluation of Character Recognition Systems," Neural Networksfor Signal
Processing III, IEEE, New York, pp. 485-496, 1993.

3. B. Sukumaran, Study of the Effect of Particle Characteristics on the Flow of Behavior
and Strength Properties of Particulate Materials, Ph.D. Dissertation, Purdue University,
197 p., 1996.

4. A. Ashmawy, B. Sukumaran, V. Vinh Hoang, "Evaluating the Influence of Particle Shape
on Liquefaction Behavior Using Discrete Element Modeling," in Proc. Offshore and
Polar Engineering Conference, 2003, pp. 542-550.

5. M. Clark, "Quantitative Shape Analysis: A Review," Mathematical Geology, vol. 13, pp.
303-319, 1981.

6. P. Barrett, "The shape of rock particles," Sedimentology, pp. 291-303, 1980.

7. E. Bowman, K. Soga, T. Drummond, "Particle Shape Characterisation using Fourier
Analysis," Geotechnique, pp. 545-554, 2001.

8. E. Garboczi, "Three-dimensional mathematical analysis of particle shape using X-ray
tomography and spherical harmonics: Application to aggregates used in concrete,"
Cement and Concrete Research, vol. 32, pp. 1621-1638, 2002.

9. E. Garboczi, N. Martys, H. Saleh, R. Livingston, "Acquiring, Analyzing, and Using
Complete Three-dimensional Aggregate Shape Information," Proc. Center for
Aggregates Research, Austin, Texas, April 22-25, 2001.

10. B. Sukumaran and A. Ashmawy, "Quantitative Characterization of the Geometry of
Discrete Particles," Geotechnique, vol. 51, No. 7, pp. 619-627, 2001.

11. F. Sadjadi and E. Hall, "Three-dimensional moment invariants," IEEE Trans. Pattern
Anal. Machine Intelligence, PAMI-2(2), 127-136, March 1980.

12. Y. Li, "Reforming the theory of invariant moments for pattern recognition," Pattern
Recognition, vol. 25, pp. 723-730, 1992.

13. J. Boon, D. Evans, H. Hennigar, "Spectral Information from Fourier Analysis of
Digitized Grain Profiles," Mathematical Geology, vol. 14, pp. 589-605, 1982.

14. R. Gonzalez and R. Woods, "Digital Image Processing," 2nd edition, Prentice Hall, Upper
Saddle River, NJ, 2001.

85



15. Y. Abu-Mostafa and D. Psaltis, "Image Normalization by Complex Moments," IEEE
Trans. Pattern Anal Mach Intell, pp. 46-55, Jan. 1985.

16. K. Hu, "Visual pattern recognition by moment invariants," IEEE Trans. Inf. Theory, vol.
8, pp. 179-187, Feb. 1962.

17. R. Duda, P.Hart, D. Stork, "Pattern Classification," 2nd edition, Wiley-Interscience, New
York, NY, 2001.

18. C. Yamaguchi and M. Takeuchi, "Influence of Toner Particle Shape and Size on
Electrophotographic Image Quality," Recent Progress in Toner Technologies, pp. 363-
368, 1997.

19. R. Freeman, "An insight into the flowability and characterization of powders," American
Laboratory, pp. 13-16, August 2001.

86




	Three-dimensional shape characterization for particle aggregates using multiple projective representations
	Let us know how access to this document benefits you - share your thoughts on our feedback form.
	Recommended Citation

	Three-Dimensional Shape Characterization For Particle Aggregates Using Multiple Projective Representations

