21,991 research outputs found

    Exploring Context with Deep Structured models for Semantic Segmentation

    Full text link
    State-of-the-art semantic image segmentation methods are mostly based on training deep convolutional neural networks (CNNs). In this work, we proffer to improve semantic segmentation with the use of contextual information. In particular, we explore `patch-patch' context and `patch-background' context in deep CNNs. We formulate deep structured models by combining CNNs and Conditional Random Fields (CRFs) for learning the patch-patch context between image regions. Specifically, we formulate CNN-based pairwise potential functions to capture semantic correlations between neighboring patches. Efficient piecewise training of the proposed deep structured model is then applied in order to avoid repeated expensive CRF inference during the course of back propagation. For capturing the patch-background context, we show that a network design with traditional multi-scale image inputs and sliding pyramid pooling is very effective for improving performance. We perform comprehensive evaluation of the proposed method. We achieve new state-of-the-art performance on a number of challenging semantic segmentation datasets including NYUDv2NYUDv2, PASCALPASCAL-VOC2012VOC2012, CityscapesCityscapes, PASCALPASCAL-ContextContext, SUNSUN-RGBDRGBD, SIFTSIFT-flowflow, and KITTIKITTI datasets. Particularly, we report an intersection-over-union score of 77.877.8 on the PASCALPASCAL-VOC2012VOC2012 dataset.Comment: 16 pages. Accepted to IEEE T. Pattern Analysis & Machine Intelligence, 2017. Extended version of arXiv:1504.0101

    Detecting Visual Relationships with Deep Relational Networks

    Full text link
    Relationships among objects play a crucial role in image understanding. Despite the great success of deep learning techniques in recognizing individual objects, reasoning about the relationships among objects remains a challenging task. Previous methods often treat this as a classification problem, considering each type of relationship (e.g. "ride") or each distinct visual phrase (e.g. "person-ride-horse") as a category. Such approaches are faced with significant difficulties caused by the high diversity of visual appearance for each kind of relationships or the large number of distinct visual phrases. We propose an integrated framework to tackle this problem. At the heart of this framework is the Deep Relational Network, a novel formulation designed specifically for exploiting the statistical dependencies between objects and their relationships. On two large datasets, the proposed method achieves substantial improvement over state-of-the-art.Comment: To be appeared in CVPR 2017 as an oral pape

    Learning Gaussian Graphical Models with Observed or Latent FVSs

    Get PDF
    Gaussian Graphical Models (GGMs) or Gauss Markov random fields are widely used in many applications, and the trade-off between the modeling capacity and the efficiency of learning and inference has been an important research problem. In this paper, we study the family of GGMs with small feedback vertex sets (FVSs), where an FVS is a set of nodes whose removal breaks all the cycles. Exact inference such as computing the marginal distributions and the partition function has complexity O(k2n)O(k^{2}n) using message-passing algorithms, where k is the size of the FVS, and n is the total number of nodes. We propose efficient structure learning algorithms for two cases: 1) All nodes are observed, which is useful in modeling social or flight networks where the FVS nodes often correspond to a small number of high-degree nodes, or hubs, while the rest of the networks is modeled by a tree. Regardless of the maximum degree, without knowing the full graph structure, we can exactly compute the maximum likelihood estimate in O(kn2+n2logn)O(kn^2+n^2\log n) if the FVS is known or in polynomial time if the FVS is unknown but has bounded size. 2) The FVS nodes are latent variables, where structure learning is equivalent to decomposing a inverse covariance matrix (exactly or approximately) into the sum of a tree-structured matrix and a low-rank matrix. By incorporating efficient inference into the learning steps, we can obtain a learning algorithm using alternating low-rank correction with complexity O(kn2+n2logn)O(kn^{2}+n^{2}\log n) per iteration. We also perform experiments using both synthetic data as well as real data of flight delays to demonstrate the modeling capacity with FVSs of various sizes

    Structured Learning via Logistic Regression

    Full text link
    A successful approach to structured learning is to write the learning objective as a joint function of linear parameters and inference messages, and iterate between updates to each. This paper observes that if the inference problem is "smoothed" through the addition of entropy terms, for fixed messages, the learning objective reduces to a traditional (non-structured) logistic regression problem with respect to parameters. In these logistic regression problems, each training example has a bias term determined by the current set of messages. Based on this insight, the structured energy function can be extended from linear factors to any function class where an "oracle" exists to minimize a logistic loss.Comment: Advances in Neural Information Processing Systems 201
    corecore