
Learning Gaussian Graphical Models with Observed
or Latent FVSs

Ying Liu
Department of EECS

Massachusetts Institute of Technology
liu_ying@mit.edu

Alan S. Willsky
Department of EECS

Massachusetts Institute of Technology
willsky@mit.edu

Abstract

Gaussian Graphical Models (GGMs) or Gauss Markov random fields are widely
used in many applications, and the trade-off between the modeling capacity and
the efficiency of learning and inference has been an important research prob-
lem. In this paper, we study the family of GGMs with small feedback vertex
sets (FVSs), where an FVS is a set of nodes whose removal breaks all the cycles.
Exact inference such as computing the marginal distributions and the partition
function has complexity O(k2n) using message-passing algorithms, where k is
the size of the FVS, and n is the total number of nodes. We propose efficient
structure learning algorithms for two cases: 1) All nodes are observed, which is
useful in modeling social or flight networks where the FVS nodes often corre-
spond to a small number of highly influential nodes, or hubs, while the rest of
the networks is modeled by a tree. Regardless of the maximum degree, without
knowing the full graph structure, we can exactly compute the maximum likelihood
estimate with complexity O(kn2 + n2 log n) if the FVS is known or in polyno-
mial time if the FVS is unknown but has bounded size. 2) The FVS nodes are
latent variables, where structure learning is equivalent to decomposing an inverse
covariance matrix (exactly or approximately) into the sum of a tree-structured ma-
trix and a low-rank matrix. By incorporating efficient inference into the learning
steps, we can obtain a learning algorithm using alternating low-rank corrections
with complexity O(kn2 + n2 log n) per iteration. We perform experiments using
both synthetic data as well as real data of flight delays to demonstrate the modeling
capacity with FVSs of various sizes.

1 Introduction
In undirected graphical models or Markov random fields, each node represents a random variable
while the set of edges specifies the conditional independencies of the underlying distribution. When
the random variables are jointly Gaussian, the models are called Gaussian graphical models (GGMs)
or Gauss Markov random fields. GGMs, such as linear state space models, Bayesian linear regres-
sion models, and thin-membrane/thin-plate models, have been widely used in communication, im-
age processing, medical diagnostics, and gene regulatory networks. In general, a larger family of
graphs represent a larger collection of distributions and thus can better approximate arbitrary empir-
ical distributions. However, many graphs lead to computationally expensive inference and learning
algorithms. Hence, it is important to study the trade-off between modeling capacity and efficiency.

Both inference and learning are efficient for tree-structured graphs (graphs without cycles): infer-
ence can be computed exactly in linear time (with respect to the size of the graph) using belief
propagation (BP) [1] while the learning problem can be solved exactly in quadratic time using the
Chow-Liu algorithm [2]. Since trees have limited modeling capacity, many models beyond trees
have been proposed [3, 4, 5, 6]. Thin junction trees (graphs with low tree-width) are extensions of
trees, where inference can be solved efficiently using the junction algorithm [7]. However, learning

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78059106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

junction trees with tree-width greater than one is NP-complete [6] and tractable learning algorithms
(e.g. [8]) often have constraints on both the tree-width and the maximum degree. Since graphs with
large-degree nodes are important in modeling applications such as social networks, flight networks,
and robotic localization, we are interested in finding a family of models that allow arbitrarily large
degrees while being tractable for learning.

Beyond thin-junction trees, the family of sparse GGMs is also widely studied [9, 10]. These models
are often estimated using methods such as graphical lasso (or l-1 regularization) [11, 12]. However,
a sparse GGM (e.g. a grid) does not automatically lead to efficient algorithms for exact inference.
Hence, we are interested in finding a family of models that are not only sparse but also have guaran-
teed efficient inference algorithms.

In this paper, we study the family of GGMs with small feedback vertex sets (FVSs), where an FVS
is a set of nodes whose removal breaks all cycles [13]. The authors of [14] have demonstrated
that the computation of exact means and variances for such a GGM can be accomplished, using
message-passing algorithms with complexity O(k2n), where k is the size of the FVS and n is the
total number of nodes. They have also presented results showing that for models with larger FVSs,
approximate inference (obtained by replacing a full FVS by a pseudo-FVS) can work very well,
with empirical evidence indicating that a pseudo-FVS of size O(log n) gives excellent results. In
Appendix A we will provide some additional analysis of inference for such models (including the
computation of the partition function), but the main focus is maximum likelihood (ML) learning of
models with FVSs of modest size, including identifying the nodes to include in the FVS.

In particular, we investigate two cases. In the first, all of the variables, including any to be included
in the FVS are observed. We provide an algorithm for exact ML estimation that, regardless of the
maximum degree, has complexityO(kn2 +n2 log n) if the FVS nodes are identified in advance and
polynomial complexity if the FVS is to be learned and of bounded size. Moreover, we provide an
approximate and much faster greedy algorithm when the FVS is unknown and large. In the second
case, the FVS nodes are taken to be latent variables. In this case, the structure learning problem
corresponds to the (exact or approximate) decomposition of an inverse covariance matrix into the
sum of a tree-structured matrix and a low-rank matrix. We propose an algorithm that iterates between
two projections, which can also be interpreted as alternating low-rank corrections. We prove that
even though the second projection is onto a highly non-convex set, it is carried out exactly, thanks
to the properties of GGMs of this family. By carefully incorporating efficient inference into the
learning steps, we can further reduce the complexity to O(kn2 + n2 log n) per iteration. We also
perform experiments using both synthetic data and real data of flight delays to demonstrate the
modeling capacity with FVSs of various sizes. We show that empirically the family of GGMs of
size O(log n) strikes a good balance between the modeling capacity and efficiency.
Related Work In the context of classification, the authors of [15] have proposed the tree aug-
mented naive Bayesian model, where the class label variable itself can be viewed as a size-one
observed FVS; however, this model does not naturally extend to include a larger FVS. In [16], a
convex optimization framework is proposed to learn GGMs with latent variables, where conditioned
on a small number of latent variables, the remaining nodes induce a sparse graph. In our setting with
latent FVSs, we further require the sparse subgraph to have tree structure.

2 Preliminaries
Each undirected graphical model has an underlying graph G = (V, E), where V denotes the set of
vertices (nodes) and E the set of edges. Each node s ∈ V corresponds to a random variable xs.
When the random vector xV is jointly Gaussian, the model is a GGM with density function given
by p(x) = 1

Z exp{− 1
2x

TJx + hTx}, where J is the information matrix or precision matrix, h is
the potential vector, and Z is the partition function. The parameters J and h are related to the mean
µ and covariance matrix Σ by µ = J−1h and Σ = J−1. The structure of the underlying graph is
revealed by the sparsity pattern of J : there is an edge between i and j if and only if Jij 6= 0.

Given samples {xi}si=1 independently generated from an unknown distribution q in the family Q,
the ML estimate is defined as qML = arg minq∈Q

∑s
i=1 log q(xi). For Gaussian distributions, the

empirical distribution is p̂(x) = N (x; µ̂, Σ̂), where the empirical mean µ̂ = 1
s

∑s
i=1 x

i and the

empirical covariance matrix Σ̂ = 1
s

∑s
i=1 x

i
(
xi
)T − µ̂µ̂T . The Kullback-Leibler (K-L) divergence

between two distributions p and q is defined as DKL(p||q) =
´
p(x) log p(x)

q(x) dx. Without loss of
generality, we assume in this paper the means are zero.

2

Tree-structured models are models whose underlying graphs do not have cycles. The ML estimate
of a tree-structured model can be computed exactly using the Chow-Liu algorithm [2]. We use
ΣCL = CL(Σ̂) and ECL = CLE(Σ̂) to denote respectively the covariance matrix and the set of edges
learned using the Chow-Liu algorithm where the samples have empirical covariance matrix Σ̂.

3 Gaussian Graphical Models with Known FVSs
In this section we briefly discuss some of the ideas related to GGMs with FVSs of size k, where we
will also refer to the nodes in the FVS as feedback nodes. An example of a graph and its FVS is
given in Figure 1, where the full graph (Figure 1a) becomes a cycle-free graph (Figure 1b) if nodes
1 and 2 are removed, and thus the set {1, 2} is an FVS.

.

.1

.5 .6 .7 .8

.2

.3.4

.9

1

(a) .

.5 .6 .7 .8

.3.4

.9

1

(b)
Figure 1: A graph with an FVS of size 2. (a) Full graph; (b) Tree-
structured subgraph after removing nodes 1 and 2

Graphs with small FVSs have been studied in various contexts. The authors of [17] have charac-
terized the family of graphs with small FVSs and their obstruction sets (sets of forbidden minors).
FVSs are also related to the “stable sets” in the study of tournaments [18].

Given a GGM with an FVS of size k (where the FVS may or may not be given), the marginal
means and variances µi =

(
J−1h

)
i

and Σii =
(
J−1

)
ii

, for ∀i ∈ V can be computed exactly
with complexity O(k2n) using the feedback message passing (FMP) algorithm proposed in [14],
where standard BP is employed two times on the cycle-free subgraph among the non-feedback nodes
while a special message-passing protocol is used for the FVS nodes. We provide a new algorithm
in Appendix D, to compute det J , the determinant of J , and hence the partition function of such a
model with complexity O(k2n). The algorithm is described and proved in Appendix A.

An important point to note is that the complexity of these algorithms depends simply on the size k
and the number of nodes n. There is no loss in generality in assuming that the size-k FVS F is fully
connected and each of the feedback nodes has edges to every non-feedback node. In particular, after
re-ordering the nodes so that the elements of F are the first k nodes (T = V \F is the set of non-

feedback nodes of size n− k), we have that J =

[
JF JTM
JM JT

]
� 0, where JT � 0 corresponds to

a tree-structured subgraph among the non-feedback nodes, JF � 0 corresponds to a complete graph
among the feedback nodes, and all entries of JM may be non-zero as long as JT − JMJ−1

F JTM � 0

(while Σ =

[
ΣF ΣTM
ΣM JT

]
= J−1 � 0). We will refer to the family of such models with a given

FVS F as QF , and the class of models with some FVS of size at most k as Qk.1 If we are not
explicitly given an FVS, though the problem of finding an FVS of minimal size is NP-complete, the
authors of [19] have proposed an efficient algorithm with complexity O(min{m log n, n2}), where
m is the number of edges, that yields an FVS at most twice the minimum size (thus the inference
complexity is increased only by a constant factor). However, the main focus of this paper, explored
in the next section, is on learning models with small FVSs (so that when learned, the FVS is known).
As we will see, the complexity of such algorithms is manageable. Moreover, as our experiments will
demonstrate, for many problems, quite modestly sized FVSs suffice.

4 Learning GGMs with Observed or Latent FVS of Size k
In this section, we study the problem of recovering a GGM from i.i.d. samples, where the feedback
nodes are either observed or latent variables. If all nodes are observed, the empirical distribution

1In general a graph does not have a unique FVS. The family of graphs with FVSs of size k includes all
graphs where there exists an FVS of size k.

3

p̂(xF ,xT) is parametrized by the empirical covariance matrix Σ̂ =

[
Σ̂F Σ̂TM
Σ̂M Σ̂T

]
. If the feedback

nodes are latent variables, the empirical distribution p̂(xT) has empirical covariance matrix Σ̂T .
With a slight abuse of notation, for a set A ⊂ V , we use q(xA) to denote the marginal distribution
of xA under a distribution q(xV).

4.1 When All Nodes Are Observed
When all nodes are observed, we have two cases: 1) When an FVS of size k is given, we propose
the conditioned Chow-Liu algorithm, which computes the exact ML estimate efficiently; 2) When
no FVS is given a priori, we propose both an exact algorithm and a greedy approximate algorithm
for computing the ML estimate.

4.1.1 Case 1: An FVS of Size k Is Given.
When a size-k FVS F is given, the learning problem becomes solving

pML(xF ,xT) = arg min
q(xF ,xT)∈QF

DKL(p̂(xF ,xT)||q(xF ,xT)). (1)

This optimization problem is defined on a highly non-convex set QF with combinatorial structures:
indeed, there are (n − k)n−k−2 possible spanning trees among the subgraph induced by the non-
feedback nodes. However, we are able to solve Problem (1) exactly using the conditioned Chow-Liu
algorithm described in Algorithm 1.2 The intuition behind this algorithm is that even though the
entire graph is not tree, the subgraph induced by the non-feedback nodes (which corresponds to
the distribution of the non-feedback nodes conditioned on the feedback nodes) has tree structure,
and thus we can find the best tree among the non-feedback nodes using the Chow-Liu algorithm
applied on the conditional distribution. To obtain a concise expression, we also exploit a property of
Gaussian distributions: the conditional information matrix (the information matrix of the conditional
distribution) is simply a submatrix of the whole information matrix. In Step 1 of Algorithm 1, we
compute the conditional covariance matrix using the Schur complement, and then in Step 2 we
use the Chow-Liu algorithm to obtain the best approximate ΣCL (whose inverse is tree-structured).
In Step 3, we match exactly the covariance matrix among the feedback nodes and the covariance
matrix between the feedback nodes and the non-feedback nodes. For the covariance matrix among
the non-feedback nodes, we add the matrix subtracted in Step 1 back to ΣCL. Proposition 1 states
the correctness and the complexity of Algorithm 1. Its proof included in Appendix B.We denote the
output covariance matrix of this algorithm as CCL(Σ̂).

Algorithm 1 The conditioned Chow-Liu algorithm

Input: Σ̂ � 0 and an FVS F
Output: EML and ΣML

1. Compute the conditional covariance matrix Σ̂T |F = Σ̂T − Σ̂M Σ̂−1
F Σ̂TM .

2. Let ΣCL = CL(Σ̂T |F) and ECL = CLE(Σ̂T |F).

3. EML = ECL and ΣML =

[
Σ̂F Σ̂TM
Σ̂M ΣCL + Σ̂M Σ̂−1

F Σ̂TM

]
.

Proposition 1. Algorithm 1 computes the ML estimate ΣML and EML, exactly with complexity
O(kn2 + n2 log n). In addition, all the non-zero entries of JML

∆
= Σ−1

ML can be computed with
extra complexity O(k2n).

4.1.2 Case 2: The FVS Is to Be Learned
Structure learning becomes more computationally involved when the FVS is unknown. In this sub-
section, we present both exact and approximate algorithms for learning models with FVS of size
no larger than k (i.e., in Qk). For a fixed empirical distribution p̂(xF ,xT), we define d(F), a set
function of the FVS F as the minimum value of (1), i.e.,

2Note that the conditioned Chow-Liu algorithm here is different from other variations of the Chow-Liu
algorithm such as in [20] where the extensions are to enforce the inclusion or exclusion of a set of edges.

4

d(F) = min
q(xF ,xT)∈QF

DKL(p̂(xF ,xT)||q(xF ,xT)). (2)

When the FVS is unknown, the ML estimate can be computed exactly by enumerating all possible(
n

k

)
FVSs of size k to find the F that minimizes d(F). Hence, the exact solution can be obtained

with complexityO(nk+2k), which is polynomial in n for fixed k. However, as our empirical results
suggest, choosing k = O(log(n)) works well, leading to quasi-polynomial complexity even for this
exact algorithm. That observation notwithstanding, the following greedy algorithm (Algorithm 2),
which, at each iteration, selects the single best node to add to the current set of feedback nodes, has
polynomial complexity for arbitrarily large FVSs. As we will demonstrate, this greedy algorithm
works extremely well in practice.
Algorithm 2 Selecting an FVS by a greedy approach

Initialization: F0 = ∅
For t = 1 to k,

k∗t = arg min
k∈V \Ft−1

d(Ft−1 ∪ {k}), Ft = Ft−1 ∪ {k∗t }

4.2 When the FVS Nodes Are Latent Variables

When the feedback nodes are latent variables, the marginal distribution of observed variables (the
non-feedback nodes in the true model) has information matrix J̃T = Σ̂−1

T = JT −JMJ−1
F JTM . If the

exact J̃T is known, the learning problem is equivalent to decomposing a given inverse covariance
matrix J̃T into the sum of a tree-structured matrix JT and a rank-k matrix−JMJ−1

F JTM .3 In general,
use the ML criterion

qML(xF ,xT) = arg min
q(xF ,xT)∈QF

DKL(p̂(xT)||q(xT)), (3)

where the optimization is over all nodes (latent and observed) while the K-L divergence in the
objective function is defined on the marginal distribution of the observed nodes only.

We propose the latent Chow-Liu algorithm, an alternating projection algorithm that is a variation
of the EM algorithm and can be viewed as an instance of the majorization-minimization algorithm.
The general form of the algorithm is as follows:

1. Project onto the empirical distribution:

p̂(t)(xF ,xT) = p̂(xT)q(t)(xF |xT).

2. Project onto the best fitting structure on all variables:

q(t+1)(xF ,xT) = arg min
q(xF ,xT)∈QF

DKL(p̂(t)(xF ,xT)||q(xF ,xT)).

In the first projection, we obtain a distribution (on both observed and latent variables) whose
marginal (on the observed variables) matches exactly the empirical distribution while maintaining
the conditional distribution (of the latent variables given the observed ones). In the second projec-
tion we compute a distribution (on all variables) in the family considered that is the closest to the
distribution obtained in the first projection. We found that among various EM type algorithms, this
formulation is the most revealing for our problems because it clearly relates the second projection
to the scenario where an FVS F is both observed and known (Section 4.1.1). Therefore, we are able
to compute the second projection exactly even though the graph structure is unknown (which allows
any tree structure among the observed nodes). Note that when the feedback nodes are latent, we do

3It is easy to see that different models having the same JMJ−1
F JM cannot be distinguished using the sam-

ples, and thus without loss of generality we can assume JF is normalized to be the identify matrix in the final
solution.

5

not need to select the FVS since it is simply the set of latent nodes. This is the source of the simpli-
fication when we use latent nodes for the FVS: We have no search of sets of observed variables to
include in the FVS.
Algorithm 3 The latent Chow-Liu algorithm

Input: the empirical covariance matrix Σ̂T

Output: information matrix J =

[
JF JTM
JM JT

]
, where JT is tree-structured

1. Initialization: J (0) =

 J
(0)
F

(
J

(0)
M

)T
J

(0)
M J

(0)
T

.

2. Repeat for t = 1, 2, 3, . . .:

(a) P1: Project to the empirical distribution:

Ĵ (t) =

 J
(t)
F (J

(t)
M)T

J
(t)
M

(
Σ̂T

)−1

+ J
(t)
M (J

(t)
F)−1(J

(t)
M)T

. Define Σ̂(t) =
(
Ĵ (t)

)−1

.

(b) P2: Project to the best fitting structure:

Σ(t+1) =

 Σ̂
(t)
F

(
Σ̂

(t)
M

)T
Σ̂

(t)
M CL(Σ̂

(t)
T |F) + Σ̂

(t)
M

(
Σ̂

(t)
F

)−1 (
Σ̂

(t)
M

)T
 = CCL(Σ̂(t)),

where Σ̂
(t)
T |F = Σ̂

(t)
T − Σ̂

(t)
M

(
Σ̂

(t)
F

)−1 (
Σ̂

(t)
M

)T
. Define J (t+1) =

(
Σ(t+1)

)−1
.

In Algorithm 3 we summarize the latent Chow-Liu algorithm specialized for our family of GGMs,
where both projections have exact closed-form solutions and exhibit complementary structure—one
using the covariance and the other using the information parametrization. In projection P1, three
blocks of the information matrix remain the same; In projection P2, three blocks of the covariance
matrix remain the same.

The two projections in Algorithm 3 can also be interpreted as alternating low-rank corrections :
indeed,

In P1 Ĵ (t) =

[
0 0

0
(

Σ̂T

)−1

]
+

[
J

(t)
F

J
(t)
M

](
J

(t)
F

)−1
[
J

(t)
F

(
J

(t)
M

)T]
,

and in P2 Σ(t+1) =

[
0 0

0 CL(Σ̂T |F)

]
+

[
Σ̂

(t)
F

Σ̂
(t)
M

](
Σ̂

(t)
F

)−1
[

Σ̂
(t)
F

(
Σ̂

(t)
M

)T]
,

where the second terms of both expressions are of low-rank when the size of the latent FVS is small.
This formulation is the most intuitive and simple, but a naive implementation of Algorithm 3 has
complexity O(n3) per iteration, where the bottleneck is inverting full matrices Ĵ (t) and Σ(t+1).
By carefully incorporating the inference algorithms into the projection steps, we are able to further
exploit the power of the models and reduce the per-iteration complexity toO(kn2+n2 log n), which
is the same as the complexity of the conditioned Chow-Liu algorithm alone. We have the following
proposition.
Proposition 2. Using Algorithm 3, the objective function of (3) decreases with the number of itera-
tions, i.e., DKL(N (0, Σ̂T)||N (0,Σ

(t+1)
T)) ≤ N (0, Σ̂T)||N (0,Σ

(t)
T)). Using an accelerated version

of Algorithm 3, the complexity per iteration is O(kn2 + n2 log n).

Due to the page limit, we defer the description of the accelerated version (the accelerated latent
Chow-Liu algorithm) and the proof of Proposition 2 to Appendix C. In fact, we never need to ex-
plicitly invert the empirical covariance matrix Σ̂T in the accelerated version.

As a rule of thumb, we often use the spanning tree obtained by the standard Chow-Liu algorithm as
an initial tree among the observed nodes. But note that P2 involves solving a combinatorial problem
exactly, so the algorithm is able to jump among different graph structures which reduces the chance

6

FBM true model: KL=0 Best Spanning Tree: KL=4.055 CLRG: KL=4.007 NJ: KL=8.974 1−FVS: KL=1.881

Figure 2: From left to right: 1) The true model (fBM with 64 time samples); 2) The best spanning
tree; 3) The latent tree learned using the CLRG algorithm in [21]; 4) The latent tree learned using
the NJ algorithm in [21]; 5) The model with a size-one latent FVS learned using Algorithm 3. The
gray scale is normalized for visual clarity.

0 5 10 15 20
0

0.5

1

1.5

Size of Latent FVS

K
−

L
 D

iv
er

ge
nc

e

(a) 32 nodes

0 5 10 15 20
0

1

2

3

4

Size of Latent FVS

K
−

L
D

iv
er

ge
nc

e

(b) 64 nodes

0 5 10 15 20
0

5

10

Size of Latent FVS
K

−
L

D
iv

er
ge

nc
e

(c) 128 nodes

0 5 10 15 20

5

10

15

20

Size of Latent FVS

K
−

L
D

iv
er

ge
nc

e

(d) 256 nodes

Figure 3: The relationship between the K-L divergence and the latent FVS size. All models are
learned using Algorithm 3 with 40 iterations.

of getting stuck at a bad local minimum and gives us much more flexibility in initializing graph
structures. In the experiments, we will demonstrate that Algorithm 3 is not sensitive to the initial
graph structure.

5 Experiments
In this section, we present experimental results for learning GGMs with small FVSs, observed or
latent, using both synthetic data and real data of flight delays.
Fractional Brownian Motion: Latent FVS We consider a fractional Brownian motion (fBM)
with Hurst parameter H = 0.2 defined on the time interval (0, 1]. The covariance function is
Σ(t1, t2) = 1

2 (|t1|2H + |t2|2H − |t1 − t2|2H). Figure 2 shows the covariance matrices of approx-
imate models using spanning trees (learned by the Chow-Liu algorithm), latent trees (learned by
the CLRG and NJ algorithms in [21]) and our latent FVS model (learned by Algorithm 3) using 64
time samples (nodes). We can see that in the spanning tree the correlation decays quickly (in fact
exponentially) with distance, which models the fBM poorly. The latent trees that are learned exhibit
blocky artifacts and have little or no improvement over the spanning tree measured in the K-L di-
vergence. In Figure 3, we plot the K-L divergence (between the true model and the learned models
using Algorithm 3) versus the size of the latent FVSs for models with 32, 64, 128, and 256 time
samples respectively. For these models, we need about 1, 3, 5, and 7 feedback nodes respectively
to reduce the K-L divergence to 25% of that achieved by the best spanning tree model. Hence, we
speculate that empirically k = O(log n) is a proper choice of the size of the latent FVS. We also
study the sensitivity of Algorithm 3 to the initial graph structure. In our experiments, for different
initial structures, Algorithm 3 converges to the same graph structures (that give the K-L divergence
as shown in Figure 3) within three iterations.
Performance of the Greedy Algorithm: Observed FVS In this experiment, we examine the
performance of the greedy algorithm (Algorithm 2) when the FVS nodes are observed. For each run,
we construct a GGM that has 20 nodes and an FVS of size three as the true model. We first generate
a random spanning tree among the non-feedback nodes. Then the corresponding information matrix
J is also randomly generated: non-zero entries of J are drawn i.i.d. from the uniform distribution
U [−1, 1] with a multiple of the identity matrix added to ensure J � 0. From each generated
GGM, we draw 1000 samples and use Algorithm 2 to learn the model. For 100 runs that we have
performed, we recover the true graph structures successfully. Figure 4 shows the graphs (and the
K-L divergence) obtained using the greedy algorithm for a typical run. We can see that we have the
most divergence reduction (from 12.7651 to 1.3832) when the first feedback node is selected. When
the size of the FVS increases to three (Figure 4e), the graph structure is recovered correctly.

7

1

2
3

456
7

8

9

10

11

12
13

14 15 16
17

18

19

20

3
8

18

(a) True Model

1

2
3

456
7

8

9

10

11

12
13

14 15 16
17

18

19

20

(b) KL=12.7651

1

2

3
456

7

8

9

10

11

12

13
14 15 16

17

18

19

20

3

(c) KL=1.3832

1

2
3

456
7

8

9

10

11

12
13

14 15 16
17

18

19

20

3
8

(d) KL=0.6074

1

2
3

456
7

8

9

10

11

12
13

14 15 16
17

18

19

20

3
8

18

(e) KL=0.0048

Figure 4: Learning a GGM using Algorithm 2. The thicker blue lines represent the edges among
the non-feedback nodes and the thinner red lines represent other edges. (a) True model; (b) Tree-
structured model (0-FVS) learned from samples; (c) 1-FVS model; (d) 2-FVS model; (e) 3-FVS
model.

(a) Spanning Tree (b) 1-FVS GGM (c) 3-FVS GGM (d) 10-FVS GGM

Figure 5: GGMs for modeling flight delays. The red dots denote selected feedback nodes and the
blue lines represent edges among the non-feedback nodes (other edges involving the feedback nodes
are omitted for clarity).

Flight Delay Model: Observed FVS In this experiment, we model the relationships among air-
ports for flight delays. The raw dataset comes from RITA of the Bureau of Transportation Statistics.
It contains flight information in the U.S. from 1987 to 2008 including information such as scheduled
departure time, scheduled arrival time, departure delay, arrival delay, cancellation, and reasons for
cancellation for all domestic flights in the U.S. We want to model how the flight delays at different
airports are related to each other using GGMs. First, we compute the average departure delay for
each day and each airport (of the top 200 busiest airports) using data from the year 2008. Note that
the average departure delays does not directly indicate whether an airport is one of the major airports
that has heavy traffic. It is interesting to see whether major airports (especially those notorious for
delays) correspond to feedback nodes in the learned models. Figure 5a shows the best tree-structured
graph obtained by the Chow-Liu algorithms (with input being the covariance matrix of the average
delay). Figure 5b–5d show the GGMs learned using Algorithm 2. It is interesting that the first node
selected is Nashville (BNA), which is not one of the top “hubs” of the air system. The reason is
that much of the statistical relationships related to those hubs are approximated well enough, when
we consider a 1-FVS approximation, by a spanning tree (excluding BNA) and it is the breaking of
the cycles involving BNA that provide the most reduction in K-L divergence over a spanning tree.
Starting with the next node selected in our greedy algorithm, we begin to see hubs being chosen.
In particular, the first ten airports selected in order are: BNA, Chicago, Atlanta, Oakland, Newark,
Dallas, San Francisco, Seattle, Washington DC, Salt Lake City. Several major airports on the coasts
(e.g., Los Angeles and JFK) are not selected, as their influence on delays at other domestic airports
is well-captured with a tree structure.

6 Future Directions
Our experimental results demonstrate the potential of these algorithms, and, as in the work [14],
suggests that choosing FVSs of sizeO(log n) works well, leading to algorithms which can be scaled
to large problems. Providing theoretical guarantees for this scaling (e.g., by specifying classes of
models for which such a size FVS provides asymptotically accurate models) is thus a compelling
open problem. In addition, incorporating complexity into the FVS-order problem (e.g., as in AIC
or BIC) is another direction we are pursuing. Moreover, we are also working towards extending our
results to the non-Gaussian settings.

Acknowledgments
This research was supported in part by AFOSR under Grant FA9550-12-1-0287.

8

References
[1] J. Pearl, “A constraint propagation approach to probabilistic reasoning,” Proc. Uncertainty in

Artificial Intell. (UAI), 1986.
[2] C. Chow and C. Liu, “Approximating discrete probability distributions with dependence trees,”

IEEE Trans. Inform. Theory, vol. 14, no. 3, pp. 462–467, 1968.
[3] M. Choi, V. Chandrasekaran, and A. Willsky, “Exploiting sparse Markov and covariance struc-

ture in multiresolution models,” in Proc. 26th Annu. Int. Conf. on Machine Learning. ACM,
2009, pp. 177–184.

[4] M. Comer and E. Delp, “Segmentation of textured images using a multiresolution Gaussian
autoregressive model,” IEEE Trans. Image Process., vol. 8, no. 3, pp. 408–420, 1999.

[5] C. Bouman and M. Shapiro, “A multiscale random field model for Bayesian image segmenta-
tion,” IEEE Trans. Image Process., vol. 3, no. 2, pp. 162–177, 1994.

[6] D. Karger and N. Srebro, “Learning Markov networks: Maximum bounded tree-width graphs,”
in Proc. 12th Annu. ACM-SIAM Symp. on Discrete Algorithms, 2001, pp. 392–401.

[7] M. Jordan, “Graphical models,” Statistical Sci., pp. 140–155, 2004.
[8] P. Abbeel, D. Koller, and A. Ng, “Learning factor graphs in polynomial time and sample com-

plexity,” J. Machine Learning Research, vol. 7, pp. 1743–1788, 2006.
[9] A. Dobra, C. Hans, B. Jones, J. Nevins, G. Yao, and M. West, “Sparse graphical models for

exploring gene expression data,” J. Multivariate Anal., vol. 90, no. 1, pp. 196–212, 2004.
[10] M. Tipping, “Sparse Bayesian learning and the relevance vector machine,” J. Machine Learn-

ing Research, vol. 1, pp. 211–244, 2001.
[11] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with the graph-

ical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.
[12] P. Ravikumar, G. Raskutti, M. Wainwright, and B. Yu, “Model selection in Gaussian graphical

models: High-dimensional consistency of l1-regularized MLE,” Advances in Neural Informa-
tion Processing Systems (NIPS), vol. 21, 2008.

[13] V. Vazirani, Approximation Algorithms. New York: Springer, 2004.
[14] Y. Liu, V. Chandrasekaran, A. Anandkumar, and A. Willsky, “Feedback message passing for

inference in Gaussian graphical models,” IEEE Trans. Signal Process., vol. 60, no. 8, pp.
4135–4150, 2012.

[15] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine learn-
ing, vol. 29, no. 2, pp. 131–163, 1997.

[16] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, “Latent variable graphical model selection
via convex optimization,” in Communication, Control, and Computing (Allerton), 2010 48th
Annual Allerton Conference on. IEEE, 2010, pp. 1610–1613.

[17] M. Dinneen, K. Cattell, and M. Fellows, “Forbidden minors to graphs with small feedback
sets,” Discrete Mathematics, vol. 230, no. 1, pp. 215–252, 2001.

[18] F. Brandt, “Minimal stable sets in tournaments,” J. Econ. Theory, vol. 146, no. 4, pp. 1481–
1499, 2011.

[19] V. Bafna, P. Berman, and T. Fujito, “A 2-approximation algorithm for the undirected feedback
vertex set problem,” SIAM J. Discrete Mathematics, vol. 12, p. 289, 1999.

[20] S. Kirshner, P. Smyth, and A. W. Robertson, “Conditional Chow-Liu tree structures for model-
ing discrete-valued vector time series,” in Proceedings of the 20th conference on Uncertainty
in artificial intelligence. AUAI Press, 2004, pp. 317–324.

[21] M. J. Choi, V. Y. Tan, A. Anandkumar, and A. S. Willsky, “Learning latent tree graphical
models,” Journal of Machine Learning Research, vol. 12, pp. 1729–1770, 2011.

9

Appendix of “Learning Gaussian Graphical Models
with Observed or Latent FVSs”

A Computing the Partition Function of GGMs in QF

In Section 3 of the paper, we have stated that given the information matrix J of a GGM with an FVS
of size k, we can compute det J and hence the partition function using a message-passing algorithm
with complexity O(k2n). This algorithm is inspired by the FMP algorithm developed in [14] and is
described in Algorithm 4.

Algorithm 4 Computing the partition function when an FVS is given

Input: an FVS F of size k and an n×n information matrix J =

[
JF JTM
JM JT

]
, where JT has tree

structure T with edge set ET .
Output: det J

1. Run standard Gaussian BP on T with information matrix JT to obtain P Tii =
(
J−1
T

)
ii

for
all i ∈ T , P Tij = (J−1

T)ij for all (i, j) ∈ ET , and (gp)i = (J−1
T hp)i for all i ∈ T and

p ∈ F , where hp is the column of JM corresponding to node p.

2. Compute ĴF with (
ĴF

)
pq

= Jpq −
∑

j∈N (p)∩T

Jpjg
q
j , ∀ p, q ∈ F

3. Compute det ĴF , the determinant of ĴF .
4. Output

det J =

 ∏
(i,j)∈ET

P Tii P
T
jj −

(
P Tij
)2

P Tii P
T
jj

∏
i∈V

P Tii

−1

det ĴF .

We state the correctness and the computational complexity of Algorithm 4 in Proposition 3.

Proposition 3. Algorithm 4 computes det J exactly and the computational complexity is O(k2n).

Before giving the proof for Proposition 3, we first prove Lemma 1.

Lemma 1. If the information matrix J � 0 has tree structure T = (V, E), then we have

det (J)
−1

=
∏
i∈V

Pii
∏

(i,j)∈E

PiiPjj − P 2
ij

PiiPjj
, (4)

where P = J−1.

Proof. WLOG, we assume the means are zero. For any tree-structured distribution p(x) with un-
derlying tree T , we have the following factorization:

p(x) =
∏
i∈V

p(xi)
∏

(i,j)∈ET

p(xi, xj)

p(xi)p(xj)
. (5)

10

For a GGM of n nodes, the joint distribution, the singleton marginal distributions, and the pairwise
marginal distributions can be expressed as follows.

p(x) =
1

(2π)
n
2 (det J)

− 1
2

exp{−1

2
xTJx}

p(xi) =
1

(2π)
1
2Pii

1
2

exp{−1

2
xTP−1

ii x}

p(xi, xj) =
1

2π

(
det

[
Pii Pij
Pji Pjj

]) 1
2

exp{−1

2
xT
[
Pii Pij
Pji Pjj

]−1

x}.

Matching the normalization factors using (5), we obtain

det (J)
−1

=
∏
i∈V

Pii
∏

(i,j)∈E

det

[
Pii Pij
Pji Pjj

]
PiiPjj

. (6)

=
∏
i∈V

Pii
∏

(i,j)∈E

PiiPjj − P 2
ij

PiiPjj
(7)

Now we proceed to prove Proposition 3.

Proof. First, we show that ĴF computed in Step 2 of Algorithm 4 equals JF −JTMJ
−1
T JM . We have[

g1 g2 · · · gk
]

= J−1
T

[
h1 h2 · · · hk

]
= J−1

T JM

from the definition in Step 1. From Step 3, we can get

ĴF = JF −
[
g1 g2 · · · gk

]T
JT
[
g1 g2 · · · gk

]
= JF −

(
J−1
T JM

)T
JT
(
J−1
T JM

)
= JF − JTMJ−1

T JM . (8)

Hence,

det J = det

([
I −JTMJ

−1
T

0 I

])
det

([
JF JTM
JM JT

])
det

([
I 0

−J−1
T JM I

])
= det

([
I −JTMJ

−1
T

0 I

] [
JF JTM
JM JT

] [
I 0

−J−1
T JM I

])
= det

[
JF − JTMJ

−1
T JM 0

0 JT

]
=
(

det ĴF

)
× (det JT) , (9)

From Lemma 1 to follow, we have

det (JT)
−1

=
∏
i∈V

P Tii
∏

(i,j)∈ET

P Tii P
T
jj −

(
P Tij
)2

P Tii P
T
jj

. (10)

Hence, we have proved the correctness of the algorithm. Now we calculate the complexity. The
first step of Algorithm 4 has complexity O(n − k) using BP. Step 2 takes O

(
k2(n− k)

)
and the

complexity of Step 3 is O(k3). Finally the complexity of Step 4 is O(n) since T is a tree. The total
complexity is thus O(k2n). This completes the proof for Proposition3.

11

Note that if the FVS is not given, we can use the factor-2 approximate algorithm in [19] to obtain
an FVS of size at most twice the minimum size with complexity O(min{m log n, n2}), where m
is the number of edges.

B Proof for Proposition 1

B.1 Preliminaries

Proposition 1 states that Algorithm 1 computes the ML estimate with covariance ΣML (together with
EML, the set of edges among the non-feedback nodes) exactly with complexity O(kn2 + n2 log n),
and that JML

∆
= Σ−1

ML can be computed with additional complexity O(k2n).

First, we define the following information quantities:

1. The entropy Hpx(x) = −
´
x
px(x) log px(x)dx

2. The conditional entropy Hpx,y(x|y) = −
´
x,y

px,y(x,y) log px|y(x|y)dxdy

3. The mutual information Ipx,y(x;y) =
´
x,y

px,y(x,y) log p(x)p(y)
p(x,y) dxdy

4. The conditional mutual information

Ipx,y,z(x;y|z) =

ˆ
x,y,z

px,y,z(x,y, z) log
p(x,y|z)

p(x|z)p(y|z)
dxdy

5. The conditional K-L divergence: D(p̂x|y||qx|y|p̂y)
∆
= D(p̂x,y||qx|yp̂y).

The (conditional) K-L divergence is always nonnegative. It is zero if and only if the two distributions
are the same (almost everywhere). When there is no confusion, the subscripts in the distributions are
often omitted, e.g., Ipx,y(x;y) written as Ip(x;y). With a slight abuse of notation, l we use p(xF)
to denote the marginal distribution of xF under the joint distribution p(x), and similarly p(xT |xF)
to denote the conditional distribution of xT given xF under the joint distribution p(x).

The standard Chow-Liu Algorithm for GGMs is summarized in 5. The complexity is O(n2 log n).
Note that in Step 3, for a fixed i, for any (i, j) /∈ ET , Σij can be computed following a topological
order of with i being the root. Hence, by book-keeping the computed products along the paths, the
complexity of computing each Σij is O(1).

Algorithm 5 the Chow-Liu Algorithm for GGMs

Input: the empirical covariance matrix Σ̂
Output: ΣCL and ECL

1. Compute the correlation coefficients ρij =
Σ̂ij√
Σ̂iiΣ̂jj

2. Find an MST (maximum weight spanning tree) of the complete graph with weights |ρij |
for edge (i, j). The edge set of the tree is denoted as ET .

3. For all i ∈ V, (ΣCL)ii = Σ̂ii; for (i, j) ∈ ET , (ΣCL)ij = Σ̂ij ; for (i, j) /∈ ET ,
(ΣCL)ij =

√
ΣiiΣjj

∏
(l,k)∈Path(i,j) ρlk, where Path(i, j) is the set of edges on the unique

path between i and j in the spanning tree.

B.2 Lemmas

Lemma 2 is a well-known result stated without proof.
Lemma 2. The p.d.f. of a tree-structured model T = (V, E) can be factorized according to either
of the following two equations:

1. p(x) = p(xr)
∏
i∈V\r p(xi|xπ(i)), where r is an arbitrary node selected as the root and

π(i) is the unique parent of node i in the tree rooted at r.

12

2. p(x) =
∏
i∈V p(xi)

∏
(i,j)∈E

p(xi,xj)
p(xi)p(xj) .

For a given F and a fixed tree T with edge set ET among the non-feedback nodes, Lemma 3 gives a
closed form solution that minimizes the K-L divergence.

Lemma 3.

min
q∈QF,T

DKL(p̂||q) = −Hp̂(x) +Hp̂(xF) +
∑
i∈V\F

Hp̂(xi|xF)−
∑

(i,j)∈ET

Ip̂(xi;xj |xF), (11)

where QF,T is the set of distributions defined on a graph with a given FVS F and a given spanning
tree T among the non-feedback nodes. The minimum K-L divergence is obtained if and only if: 1)
q(xF) = p̂(xF); 2) q(xF , xi, xj) = p̂(xF , xi, xj) for any (i, j) ∈ ET .

Proof. With fixed F and T ,

DKL(p̂||q) =

ˆ
p̂(x) log

p̂(x)

q(x)
dx

= −Hp̂(x)−
ˆ
p̂(x) log q(x)dx

= −Hp̂(x)−
ˆ
p̂(x) log (q(xF)q(xT |xF)) dx

(a)
= −Hp̂(x)−

ˆ
p̂(x) log

q(xF)q(xr|xF)
∏

i∈V\F\r

q(xi|xF ,xπ(i))

 dx

= −Hp̂(x)−
ˆ
p̂(xF) log q(xF)dxF −

ˆ
p̂(xF ,xr) log q(xr|xF)dxFdxr

−
∑

i∈V\F\r

ˆ
p̂(xF ,xπ(i),xi) log q(xi|xF ,xπ(i))dxFdxπ(i)dxi

(b)
= −Hp̂(x) +Hp̂(xF) +D(p̂F ||qF) +Hp̂(xr|xF) +D(p̂r|F ||qr|F |p̂F)

+
∑

i∈V \F\r

Hp̂(xi|xF,π(i)) +D(p̂i|F,r||qi|F,r|p̂F,r)

(c)

≥ −Hp̂(x) +Hp̂(xF) +Hp̂(xr|xF) +
∑

i∈V \F\r

Hp̂(xi|xF,π(i)), (12)

where (a) is obtained by using Factorization 1 in Lemma 2 with an arbitrary root node r; (b) can be
directly verified using the definition of the information quantities, and the equality in (c) is satisfied
when qF = p̂F , qr|F = p̂r|F , and qi|F,π(i) = p̂i|F,π(i),∀i ∈ T\r, or equivalently when

qF = p̂F

qF,i,j = p̂F,i,j ,∀(i, j) ∈ ET . (13)

Next, we derive another expression of (12). By substituting (13) into Factorization s of Lemma 2,
we have

q∗(x) = p̂(xF)
∏
i∈T

p̂(xi|xF)
∏

(i,j)∈ET

p̂(xi,xj |xF)

p̂(xi|xF)p̂(xj |xF)
.

13

Hence,

min
q∈QF,T

D(p̂||q) = D(p̂||q∗)

−Hp̂(x) +Hp̂(xF) +
∑
i∈V \F

Hp̂(xi|xF) (14)

+
∑

(i,j)∈ET

ˆ
p̂F,i,j(xF ,xi,xj) log

p̂(xi,xj |xF)

p̂(xi|xF)p̂(xj |xF)
dxFdxidxj (15)

= Hp̂(x) +Hp̂(xF) +
∑
i∈V \F

Hp̂(xi|xF) (16)

−
∑

(i,j)∈ET

ˆ
p̂F,i,j(xF ,xi,xj) log

p̂(xi|xF)p̂(xj |xF)

p̂(xi,xj |xF)
dxFdxidxj (17)

= −Hp̂(x) +H(p̂F) +
∑
i∈V\F

H(p̂i|F |xF)−
∑

(i,j)∈ET

Ip̂(xi;xj |xF). (18)

We have thus proved Lemma 3.

The following Lemma 4 gives a closed-form expression for the K-L divergence between two Gaus-
sians. It can be verified by calculus and the proof is omitted.

Lemma 4. For two n-dimensional Gaussian distributions p̂(x) = N (x; µ̂, Σ̂) and q(x) =
N (x;µ,Σ), we have

D(p̂||q) =
1

2

(
Tr
(

Σ−1Σ̂
)

+(µ− µ̂)
T

Σ−1 (µ− µ̂)− n ln det
(

Σ−1Σ̂
))

. (19)

An immediate implication of Lemma 4 is that when learning GGMs we always have that µML = µ̂
if there is no constraint on the mean in.

Lemma 5. If a symmetric positive definite matrix Σ is given and we know that its inverse J = Σ−1

is sparse with respect to a tree T = (V, E), then the non-zero entries of J can be computed using
(20) in time O(n).

Jij =


(1− deg(i)) Σ−1

ii +
∑
j∈N (i)

(
Σii − ΣijΣ

−1
jj Σji

)−1
i = j ∈ V

Σij

Σ2
ij−ΣiiΣjj

(i, j) ∈ E
0 otherwise,

(20)

where N (i) is the set of neighbors of node i in T ; deg(i) is the degree of i in T .

Proof. Since Σ � 0, we can construct a Gaussian distribution p(x) with zero mean and covariance
matrix Σ. The distribution is tree-structured because J = Σ−1 has tree structure T . Hence, we have
the following factorization.

p(x) =
∏
i∈V

p(xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)
,

14

where

p(x) =
1

(2π)
n
2 (det J)

− 1
2

exp{−1

2
xTJx}

p(xi) =
1

(2π)
1
2Pii

1
2

exp{−1

2
xTΣ−1

ii x}

p(xi, xj) =
1

2π

(
det

[
Σii Σij
Σji Σjj

]) 1
2

exp{−1

2
xT
[

Σii Σij
Σji Σjj

]−1

x}.

By matching the quadratic coefficient in the exponents, we have that

Jii = Σ−1
ii +

∑
j∈N (i)

(([
Σii Σji
Σij Σjj

]−1
)

11

− Σ−1
ii

)

= (1− deg(i)) Σ−1
ii +

∑
j∈N (i)

(
Σii − ΣijΣ

−1
jj Σji

)−1

and for (i, j) ∈ E ,

Jij =

([
Σii Σij
Σji Σjj

]−1
)

12

=
Σij

Σ2
ij − ΣiiΣjj

The complexity of computing each Jij , (i, j) ∈ E is O(1) and the complexity of computing each
Jii is O(deg i). Since Σi∈V deg(i) equals twice the number of edges, which is O(n), the total
complexity is O(n).

Lemma 6. (The matrix inversion lemmas)

If
[
A B
C D

]
is invertible, we have[

A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
(21)

or[
A B
C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(22)

and (
A−BD−1C

)−1
= A−1 +A−1B(D − CA−1B)−1CA−1. (23)

The proof of Lemma 6 can be found in standard matrix analysis books.

B.3 Proof of Proposition 1

Proof. For a fixed FVS F , the LHS of (11) is only a function of the spanning tree among the non-
feedback nodes. Hence, the optimal set of edges among the non-feedback nodes can be obtained by
finding the maximum spanning tree of the subgraph induced by T with Ip̂(xi;xj |xF) ≥ 0 being the
edge weight between i and j. 4

4In fact, we have given an algorithm to learn general models (not only GGMs, but also other models, e.g.,
discrete ones) defined on graphs with a given FVS F . However, we do not explore the general setting in this
paper.

15

For Gaussian distributions, the covariance matrix of the distribution p̂(xT |xF) depends only on the
set F but is invariant to the value of xF . Hence, finding the optimal edge set of the tree part is equiva-
lent to running the Chow-Liu algorithm with the input being the covariance matrix of p̂T |F (xT |xF),
which is simply Σ̂T |F = Σ̂T − Σ̂M Σ̂−1

F Σ̂TM . Let ECL = CLE(Σ̂T |F) and ΣCL = CL(Σ̂T |F). Denote

the optimal covariance matrix as ΣML =

[
ΣML
F

(
ΣML
M

)T
ΣML
M ΣML

T

]
. According to (13), we must have

ΣML
F = Σ̂F and ΣML

M = Σ̂M . From (13) the corresponding conditional covariance matrix ΣML
T |F of

ΣML must equal ΣCL. Hence, we have ΣML
T |F = ΣML

T − ΣML
M

(
ΣML
F

)−1 (
ΣML
M

)T
= ΣCL. Therefore,

we can obtain ΣML
T = CL(Σ̂T |F) + Σ̂M Σ̂−1

F Σ̂TM . We also have that EML = ECL since EML is defined
to be the set of edges among the feedback nodes.

Now we analyze the complexity of Algorithm 1. The matrix Σ̂T |F is computed with complexity
O(kn2). Computing the maximum weight spanning tree algorithm has complexity O(n2 log n)
using Kruskal’s algorithm (the amortized complexity can be further reduced, but it is not the focus
of this paper). Other operations have complexity O(n2). Hence, the total complexity of Algorithm
1 is O(kn2 + n2 log n).

Next we proceed to prove that we can compute all the non-zero entries of JML = (ΣML)
−1 in time

O(k2n).

Let JML =

[
JML
F

(
JML
M

)T
JML
M JML

T

]
. We have that JML

T =
(

CL(Σ̂T |F)
)−1

has tree structure with T .

Therefore, the non-zero entries of JML
T can be computed with complexity O(n− k).from Lemma 5.

From (22) we have

JML
M = −JML

T ΣML
M

(
ΣML
F

)−1
, (24)

which can be computed with complexityO(k2n) by matrix multiplication in the regular order. Note
that JML

T ΣML
M is computed in O(kn) since JML

T only has O(n) non-zero entries.

From (22) we have

JML
F =

(
ΣML
F

)−1
(
I +

((
ΣML
M

)T
JML
T

) (
ΣML
M

(
ΣML
F

)))
,

which has complexity O(k2n) following the order specified by the parentheses. Note that(
PML
M

)T
JML
T is computed in O(kn) because JML

T only has O(n) non-zero entries. Hence, we need
extra complexity of O(k2n) to compute all the non-zero entries of JML.

We have therefore completed the proof for Proposition 1.

For easy reference, we summarize the procedure to compute JML in Algorithm 6.

Algorithm 6 Compute JML = (ΣML)
−1 after running Algorithm 1

1. Compute JML
T using (20)

2. Compute JML
M = −JML

T ΣML
M Σ−1

F using sparse matrix multiplication

3. Compute
(
ΣML
F

)−1
(
I +

((
ΣML
M

)T
JML
T

) (
ΣML
M

(
ΣML
F

)))
following the order specified by

the parentheses using sparse matrix multiplication.

C Proof of Proposition 2

In this section, we first prove a more general result stated in Lemma 7.

16

Lemma 7. In Algorithm 7, if Step 2(a) and Step 2(b) can be computed exactly, then we have
that D(p̂(xT)||q(t+1)(xT)) ≤ D(p̂(xT)||q(t)(xT)), where the equality is satisfied if and only if
p̂(t)(xF ,xT) = p̂(t+1)(xF ,xT).

Algorithm 7 Alternating Projection

1. Propose an initial distribution q(0)(xF ,xT) ∈ QF
2. Alternating projections:

(a) P1: Project to the empirical distribution:

p̂(t)(xF ,xT) = p̂(xT)q(t)(xF |xT)

(b) P2: Project to the best fitting structure on all variables:

q(t+1)(xF ,xT) = arg min
q(xF ,xT)∈QF

D(p̂(t)(xF ,xT)||q(xF ,xT))

.

Proof. For any t,

D(p̂(t)(xT ,xF)||q(t)(xF ,xT))

=

ˆ
xT ,xF

p̂(xT)q(t)(xF |xT) log
p̂(xT)q(t)(xF |xT)

q(t)(xF ,xT)

=

ˆ
xT ,xF

p̂(xT)q(t)(xF |xT) log
p̂(xT)

q(t)(xT)

=

ˆ
xT

p̂(xT) log
p̂(xT)

q(t)(xT)

=D(p̂(t)(xT)||q(t)(xT)) (25)

By the definition of q(t+1) in step (b), we have

D(p̂(xT ,xF)||q(t+1)(xF ,xT)) ≤ D(p̂(t)(xT ,xF)||q(t)(xF ,xT)). (26)

Therefore,

D(p̂(xT)||q(t)(xT))

(a)
=D(p̂(t)(xT ,xF)||q(t)(xF ,xT)) (27)
(b)

≥D(p̂(t)(xT ,xF)||q(t+1)(xF ,xT)) (28)

=

ˆ
xT ,xF

p̂(xT)q(t)(xF |xT) log
p̂(xT)q(t)(xF |xT)

q(t+1)(xF ,xT)

=

ˆ
xT ,xF

p̂(xT)q(t)(xF |xT) log
p̂(xT)

q(t+1)(xT)
+

ˆ
xT ,xF

p̂(xT)q(t)(xF |xT) log
q(t)(xF |xT)

q(t+1)(xF |xT)

=

ˆ
xT

p̂(xT) log
p̂(xT)

q(t+1)(xT)
+

ˆ
xT ,xF

p̂(xT)q(t)(xF |xT) log
q(t)(xF |xT)p̂(xT)

q(t+1)(xF |xT)p̂(xT)
(29)

=D(p̂(xT)||q(t+1)(xT)) +

ˆ
xT ,xF

p̂(t)(xF ,xT) log
p̂(t)(xF ,xT)

p̂(t+1)(xF ,xT)

=D(p̂(xT)||q(t+1)(xT)) +D(p̂(t)(xF ,xT)||p̂(t+1)(xF ,xT))

(c)

≥D(p̂(xT)||q(t+1)(xT)), (30)

17

where (a) is due to (25), (b) is due to (26), and (c) is due to thatD(p̂(t)(xF ,xT)||p̂(t+1)(xF ,xT)) ≥
0. Therefore, we always have D(p̂(xT)||q(t)) ≥ D(p̂(xT)||q(t+1)). A necessary condition for the
objective function to remain the same is that D(p̂(t)(xF ,xT)||p̂(t+1)(xF ,xT)) = 0, which implies
that p̂(t)(xF ,xT) = p̂(t+1)(xF ,xF). Hence, it further implies that q(t)(xF ,xT) = q(t+1)(xF ,xT)
under non-degenerate cases. Therefore, p̂(t)(xF ,xT) = p̂(t+1)(xF ,xF) is a necessary and sufficient
condition for the objective function to remain the same. This completes the proof for Lemma 7.

Now we proceed to the proof for Proposition 2.

Proof. Use the same notation as in the latent Chow-Liu algorithm (Algorithm 3). Let p̂(xT) =

N (0, Σ̂T), p(t)(xF ,xT) = N (0,Σ(t)). Then

p̂(xT) =
1√

det
(

2πΣ̂T

) exp{−1

2
xTT Σ̂−1

T xT }

p(t)(xF |xT) =
1√

det

(
2π
(
J

(t)

F

)−1
) exp{−1

2

(
xF −

(
J

(t)
F

)−1

J
(t)
M xT

)T
J

(t)
F

(
xF −

(
J

(t)
F

)−1

J
(t)
M xT

)T
}

Hence, following Algorithm 7, we have

p̂(t)(xF ,xT) = p̂(xT)q(t)(xF |xT)

∝ exp{−1

2

[
xF
xT

]T  J
(t)
F

(
J

(t)
M

)T
J

(t)
M Σ̂−1

T + J
(t)
M (J

(t)
F)−1(J

(t)
M)T

[xF
xT

]
},

which gives the same expression as in P1 of Algorithm 3. The next projection

q(t+1)(xF ,xT) = min
q(xF ,xT)∈QF

D(p̂(t)(xF ,xT)||q(xF ,xT))

has same form as M-L learning problem in Section 4.1.1, and therefore can be computed exactly
using the conditioned Chow-Liu algorithm (Algorithm 1). By Lemma 7, we have thus proved the
first part of Proposition 2. The second part about the complexity of an accelerated version is proved
in Section D.

D The Accelerated Latent Chow-Liu Algorithm

In this section, we describe the accelerated latent Chow-Liu algorithm (Algorithm 8), which gives
exactly the same result as the latent Chow-Liu algorithm 3, but has a lower complexity of O(kn2 +
n2 log n) per iteration. The main complexity reduction is due to the use of Algorithm 6.

We will use the following lemma in the proof of Algorithm 8.

Now we proceed to prove the correctness of the accelerated Chow-Liu algorithm and obtain its
complexity.

Proof. In P1 of the latent Chow-Liu algorithm (Algorithm 3) we have

Ĵ (t) =

 J
(t)
F (J

(t)
M)T

J
(t)
M

(
Σ̂T

)−1

+ J
(t)
M (J

(t)
F)−1(J

(t)
M)T

 .
Without explicitly computing Ĵ (t), we can directly compute Σ̂(t) =

(
Ĵ (t)

)−1

as follows.

18

Let A = J
(t)
F , B = (J

(t)
M)T , C = Ĵ

(t)
M , and D =

(
Σ̂T

)−1

+ J
(t)
M (J

(t)
F)−1(J

(t)
M)T). From (22) we

have
Σ̂

(t)
F =

(
J

(t)
F

)−1

+
(
J

(t)
F

)−1 (
J

(t)
M

)T
(D − CA−1B)−1Ĵ

(t)
M

(
J

(t)
F

)−1

and
Σ̂

(t)
T = (D − CA−1B)−1 = Σ̂T . (31)

Σ̂
(t)
F =

(
J

(t)
F

)−1

+
(
J

(t)
F

)−1 (
J

(t)
M

)T
Σ̂T Ĵ

(t)
M

(
J

(t)
F

)−1

. (32)

Also from (22), we have that

Σ̂
(t)
M = −Σ̂TJ

(t)
M

(
J

(t)
F

)−1

. (33)

It can be checked that the matrix multiplications of (31), (32), and (33) have complexity O(kn2).

P2 in Algorithm 3 can be computed with complexityO(n2k+n2 log n) from Proposition 1. There-
fore, the complexity of this accelerated version (summarized in Algorithm 8) is O(n2k + n2 log n)
per iteration. We have thus completed the proof for Proposition 2.

Algorithm 8 The accelerated Chow-Liu algorithm

Input: the empirical covariance matrix Σ̂T

Output: information matrix J =

[
JF JTM
JM JT

]
.

1. Initialization: J (0) =

 J
(0)
F

(
J

(0)
M

)T
J

(0)
M J

(0)
T

.

2. Repeat

(a) AP1: Compute

Σ̂
(t)
F =

(
J

(t)
F

)−1

+
(
Y (t)

)T
Σ̂TY

(t)

Σ̂
(t)
T = Σ̂T

Σ̂
(t)
M = −Σ̂TY

(t),

where Y (t) = Ĵ
(t)
M

(
J

(t)
F

)−1

Let Σ̂(t) =

 Σ̂
(t)
F

(
Σ̂

(t)
M

)T
Σ̂

(t)
M Σ̂T

.

(b) AP2: Compute Σ(t+1) and J (t+1)=
(
Σ(t+1)

)−1
from Σ̂(t) using Algorithm 1 and Al-

gorithm 6:

J (t+1) =

 J
(t+1)
F

(
J

(t+1)
M

)T
J

(t+1)
M J

(t+1)
T


Σ(t+1) =

 Σ
(t+1)
F

(
Σ

(t+1)
M

)T
Σ

(t+1)
M Σ

(t+1)
T



19

	Introduction
	Preliminaries
	Gaussian Graphical Models with Known FVSs
	Learning GGMs with Observed or Latent FVS of Size k -0.15in
	When All Nodes Are Observed
	Case 1: An FVS of Size k Is Given.
	Case 2: The FVS Is to Be Learned-0.1in

	When the FVS Nodes Are Latent Variables

	Experiments-0.15in
	Future Directions-0.15in
	Computing the Partition Function of GGMs in QF
	Proof for Proposition 1
	Preliminaries
	Lemmas
	Proof of Proposition 1

	Proof of Proposition 2
	The Accelerated Latent Chow-Liu Algorithm

