3,572 research outputs found

    An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.896637Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The 2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows

    Diffeomorphic density registration

    Full text link
    In this book chapter we study the Riemannian Geometry of the density registration problem: Given two densities (not necessarily probability densities) defined on a smooth finite dimensional manifold find a diffeomorphism which transforms one to the other. This problem is motivated by the medical imaging application of tracking organ motion due to respiration in Thoracic CT imaging where the fundamental physical property of conservation of mass naturally leads to modeling CT attenuation as a density. We will study the intimate link between the Riemannian metrics on the space of diffeomorphisms and those on the space of densities. We finally develop novel computationally efficient algorithms and demonstrate there applicability for registering RCCT thoracic imaging.Comment: 23 pages, 6 Figures, Chapter for a Book on Medical Image Analysi

    Gromov-Monge quasi-metrics and distance distributions

    Full text link
    Applications in data science, shape analysis and object classification frequently require maps between metric spaces which preserve geometry as faithfully as possible. In this paper, we combine the Monge formulation of optimal transport with the Gromov-Hausdorff distance construction to define a measure of the minimum amount of geometric distortion required to map one metric measure space onto another. We show that the resulting quantity, called Gromov-Monge distance, defines an extended quasi-metric on the space of isomorphism classes of metric measure spaces and that it can be promoted to a true metric on certain subclasses of mm-spaces. We also give precise comparisons between Gromov-Monge distance and several other metrics which have appeared previously, such as the Gromov-Wasserstein metric and the continuous Procrustes metric of Lipman, Al-Aifari and Daubechies. Finally, we derive polynomial-time computable lower bounds for Gromov-Monge distance. These lower bounds are expressed in terms of distance distributions, which are classical invariants of metric measure spaces summarizing the volume growth of metric balls. In the second half of the paper, which may be of independent interest, we study the discriminative power of these lower bounds for simple subclasses of metric measure spaces. We first consider the case of planar curves, where we give a counterexample to the Curve Histogram Conjecture of Brinkman and Olver. Our results on plane curves are then generalized to higher dimensional manifolds, where we prove some sphere characterization theorems for the distance distribution invariant. Finally, we consider several inverse problems on recovering a metric graph from a collection of localized versions of distance distributions. Results are derived by establishing connections with concepts from the fields of computational geometry and topological data analysis.Comment: Version 2: Added many new results and improved expositio
    • …
    corecore