1 research outputs found

    An Image Filter Based on Multiobjective Genetic Algorithm and Shearlet Transformation

    Get PDF
    Rician noise pollutes magnetic resonance imaging (MRI) data, making data’s postprocessing difficult. In order to remove this noise and avoid loss of details as much as possible, we proposed a filter algorithm using both multiobjective genetic algorithm (MOGA) and Shearlet transformation. Firstly, the multiscale wavelet decomposition is applied to the target image. Secondly, the MOGA target function is constructed by evaluation methods, such as signal-to-noise ratio (SNR) and mean square error (MSE). Thirdly, MOGA is used with optimal coefficients of Shearlet wavelet threshold value in a different scale and a different orientation. Finally, the noise-free image could be obtained through inverse wavelet transform. At the end of the paper, experimental results show that this proposed algorithm eliminates Rician noise more effectively and yields better peak signal-to-noise ratio (PSNR) gains compared with other traditional filters
    corecore