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Rician noise pollutes magnetic resonance imaging (MRI) data, making data’s postprocessing difficult. In order to remove this noise
and avoid loss of details as much as possible, we proposed a filter algorithm using both multiobjective genetic algorithm (MOGA)
and Shearlet transformation. Firstly, the multiscale wavelet decomposition is applied to the target image. Secondly, the MOGA
target function is constructed by evaluation methods, such as signal-to-noise ratio (SNR) and mean square error (MSE). Thirdly,
MOGA is used with optimal coefficients of Shearlet wavelet threshold value in a different scale and a different orientation. Finally,
the noise-free image could be obtained through inverse wavelet transform. At the end of the paper, experimental results show
that this proposed algorithm eliminates Rician noise more effectively and yields better peak signal-to-noise ratio (PSNR) gains
compared with other traditional filters.

1. Introduction

Magnetic resonance imaging (MRI) devices are important
imaging equipment, and the image quality directly impacts
the diagnosis accuracy. However, MRI images are frequently
contaminated by Rician noise during image gaining or
transmission [1].This phenomenonmakes noise reduction to
be one of the most important problems in image processing.
Preservation of image details and attenuation of noise are
both critical, but they are contradictory in nature. Therefore,
this research is focused on Rician noise elimination and data
details preservation at the same time.

Because of its good performance in both time domain
and frequency domain, wavelet transform has become one
of the most active research fields in image processing. It
provides better results and preserves more details compared
with traditional algorithms. However, wavelet transform
cannot achieve optimal sparse for images containing higher-
dimension singularity. To overcome the limitation,multiscale
geometric analysis theory is proposed, and, based on it,
a series of methods sprang out, for example, ridgelet [2],
curvelet [3], contourlet [4], and bandlet [4]. One of the most
successful ideas is the curvelets ofCandes andDonoho,which

achieve an (almost) optimal approximation for 2D piecewise
smooth functions with discontinuities along with 𝐶

2 curves.
Recently, Labate et al. described a new class of multidi-

mensional representation systems, which is called Shearlet.
One advantage of this approach is that these systems can be
constructed using generalized multiresolution analysis and
implemented efficiently using a classical cascade algorithm
[5–11].

Simple threshold denoising method of classical Shearlet
transform could yield good performance because of the
method’s multiscale and multidirection characteristics and
image sparse representation. However, there is still room
for improvement because classical Shearlet algorithm does
not take energy distribution of different scales and different
directions into consideration; as a result, it kills the coefficient
excessively; therefore, image details could be lost. In order
to solve the problem, Sun and Zhao [12] proposed a particle
swarm optimization; it uses adaptive algorithm to search for
optimal threshold of the highest PSNR values.

Based on these previous achievements, this paper pro-
posed a new image-filtering algorithm. It has three charac-
teristics: it uses soft threshold in Shearlet, it builds target
function in MOGA by several evaluation methods, and it
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uses the MOGA to optimize coefficients of Shearlet wavelet
threshold value in different scale and a different orientation.

The rest of this paper is organized as follows. Section 2
introduces related theories. Section 3 explains our algorithm,
includingworkflow, Section 4 presents the experiment results
of proposed algorithm, and Section 5 concludes this paper.

2. Related Theories

2.1. Rician Noise. Noised MRI image V can be defined as
V
(𝑖)

= 𝑢
(𝑖)

+ 𝑛
(𝑖)
; here, 𝑢

(𝑖)
represent original image pixels,

and 𝑛
(𝑖)

represent is noised pixels. When MR images are
computed by using the magnitude of single-complex raw
data, its distribution can be modeled as a Rician model [13–
15]. Consider the following:
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Here, 𝜎2 is the standard deviation (STD) of Gaussian noise,
𝐴 is the amplitude of the signal without noise, 𝑥 is the value
of the magnitude image, and 𝐼

0
is the 0th-order modified

Bessel function. This model is used by the majority of the
noise estimation methods.

When SNR is small enough (i.e., SNR = 0), the Ri-
cian distribution is considered as a Rayleigh distribution.
Consider the following:
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When SNR is high (i.e., SNR > 3), the Rician distribution
is approximated as a Gaussian distribution.
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2.2. Shearlet Transform. Labate et al. [5–11] proposed Shearlet
transform based on wavelet. With dimension 𝑛 = 2, consider
the following affine system:
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Here, 𝜓 ∈ 𝐿
2
(R2), and 𝐴, 𝐵 are 2∗2 invertible matrices with

| det𝐵| = 1.
If Ψ
𝐴𝐵

(𝜓) satisfied Parseval 𝐿2(R2), then, those elements
of Ψ
𝐴𝐵

(𝜓) are called composite wavelets.
Shearlet is a special example of 𝐿2(R2) only when
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Here, 𝐴 = 𝐴
0
is the anisotropic dilation matrix, and 𝐵 = 𝐵

0

is the shear matrix.
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Figure 1: Workflow of proposed algorithm.

Figure 2: Original MR image.

2.3. Multiobjective Genetic Algorithm (MOGA). Multiob-
jective genetic algorithm seeks feasible solutions to prob-
lems comprising multiple objectives which are often in
conflict with each other. A general minimization prob-
lem of 𝑀 objectives can be mathematically stated as 𝑥 =

[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑑
], where 𝑑 is the dimension of the decision

variable space. Consider the following.
Minimize 𝑓(𝑥) = [𝑓

𝑖
(𝑥), 𝑖 = 1, . . . , 𝑚] which satisfies

𝑔
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(11)

where 𝑓
𝑖
(𝑥) is the 𝑖th objective function, 𝑔

𝑗
(𝑥) is the 𝑗th

inequality constraint, and ℎ
𝑘
(𝑥) is the 𝑘th equality constraint.

The multiobjective optimization problem then reduces to
finding an 𝑥, such that 𝑓(𝑥) is optimized.

3. Proposed Algorithm

3.1. Threshold Rule. Threshold rule is the most important
problem in image denoising of transform domain, and the
hard-threshold and the soft-threshold approaches are two
options. Donoho and Johnstone [16] proposed the following
threshold rule:

𝛿 = 𝜎√2 ln (𝑁). (12)

Here, 𝑁 is the pixels number of image, and 𝜎 is the noise
level.

Research shows that Donoho threshold is the optimal
threshold limit not the optimal threshold. With this con-
sidered, Donoho and Johnstone [16] proposed an improved
threshold rule as follows:

𝛿
𝑘
= 𝜎√2 ln (𝑁) ∗ 2

(𝑘−𝐾)/2
, 𝑘 = 0, 1, . . . , 𝐾. (13)

As many researchers point out [12, 13], (12) did not
consider energies of subwavelets in a different direction while
being in the same scale, and this imperfection will make
coefficients too much stifled.

Considering the variability of image content and Shearlet
transformation of multiscale and multidirection characteris-
tics, a novel threshold selection rule is proposed based on
Shearlet transform multiscale and multidirection; this rule is
the following.

Comprehensively considering complexity of image and
the multiscale and multidirection characteristics of Shearlet
transform, this paper proposed the following adaptive thresh-
old rule:

𝛿
𝑘,𝑗

= Sigmoid (𝜎√2 ln (𝑁) ∗ 2
(𝑘−𝐾)/2

) , 𝑘 = 0, 1, . . . , 𝐾,

Sigmoid =
1

1 + 𝑒−V
.

(14)
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(a) Lena (b) 𝜎 = 0.05 (c) Filter (b) by Shearlet (d) Filter (b) by proposed algorithm

(e) Baboon (f) 𝜎 = 0.1 (g) Filter (f) by Shearlet (h) Filter (f) by proposed algorithm

(i) Barbara (j) 𝜎 = 0.15 (k) Filter (j) by Shearlet (l) Filter (j) by proposed algorithm

(m) MRI (n) 𝜎 = 0.2 (o) Filter (n) by Shearlet (p) Filter (n) by proposed algorithm

Figure 3: Experiment images in different noise levels and different algorithms.

Here, Sigmoid is adopted to build our rules. The Sigmoid
curve is a mathematical concept which has been widely used
tomodel the natural life cycle ofmany things, for its derivative
is continuous and with higher accuracy. 𝐾 is the scale level,
and 𝑗 is the 𝑗th direction under the 𝑘th scale level.

3.2. Target Function. We build MOGA target function by the
signal-to-noise ratio (SNR) and themean square error (MSE).

Signal-to-noise ratio (SNR) can be defined as

SNR = 10𝑙𝑔

∑
𝑀

𝑖=1
∑
𝑁

𝑗=1
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(𝐴 (𝑖, 𝑗) − 𝑂 (𝑖, 𝑗))

2
. (15)

Here, 𝑂 is original image with size of 𝑀 × 𝑁 pixels, 𝐴 is
filtered image of noised image, and (𝑖, 𝑗) are coordinates of
pixels.
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Mean square error (MSE) expressed the correlation be-
tween images, and it is defined as follows:

MSE =
1

𝑀 × 𝑁
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2

. (16)

Here, 𝑂 is original image with size of 𝑀 × 𝑁 pixels, 𝐴 is
filtered image of noised image, and (𝑖, 𝑗) are coordinates of
pixels.

Our target function is defined as follows:

𝑦 = 𝜔
1
⋅ SNR + 𝜔

2
⋅MSE, 0 ≤ 𝜔

1
, 𝜔
2
≤ 1,

𝜔
1
+ 𝜔
2
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(17)

Here, 𝜔
1
, 𝜔
2
are weight coefficients of SNR and MSE.

3.3. Proposed Model. Themost critical problem which lies in
our optimal filtering performance study is, under optimiza-
tion criterion, how to decide coefficients V, 𝛿

𝑘,𝑗
considering

energy of subwavelets not only in different scale but also in
different direction.

Here, we proposed our algorithm which adopts MOGA
algorithm to decide coefficients V, 𝛿

𝑘,𝑗
of each subwavelet in

different scale and direction of Shearlet transform, intending
to get optimal filtering performance.

Our algorithm works as follows [17, 18]; see Figure 1.

Step 1 (initialization). Generate an initial population contain-
ing 𝑁pop strings, where 𝑁pop is the number of strings
in each population. These strings contain weight coef-
ficients of SNR, MSE, weight coefficients 𝛿

𝑘,𝑗
of Shear-

let subwavelets, V of 𝑆 function, and other parameters in
MOGA; thus, we need the following.

Step 2 (evaluation).

(1) Use Shearlet transform to decompose target image.
(2) Multiply subwavelets by weight coefficients 𝛿

𝑘,𝑗
.

(3) Filter subwavelets by threshold rule.
(4) Reconstruct image by filtered subwavelets.
(5) Calculate the values of the objective functions (16) for

the generated strings.
(6) Update a tentative setoff Pareto optimal solution.

Step 3 (selection). Calculate the fitness value of each string
using the random weights in (3). Select a pair of strings from
the current population according to the following selection
probability.

Step 4 (crossover). For each selected pair, apply a crossover
operation to generate two new strings. 𝑁pop new strings are
generated by the crossover.

Step 5 (mutation). For each bit value of the strings generated
by the crossover, apply a mutation with a prespecified muta-
tion probability.

Table 1: Filtering results for Lena and Barbara.

Image 𝜎 (%) PSNR
Shearlet Shearlet-MOGA

Lena
10 34.38 35.02
20 31.79 33.24
30 29.21 30.21

Barbara
10 33.07 33.07
20 29.40 29.40
30 26.31 27.51

Step 6 (elitist strategy). Randomly remove𝑁elite strings from
the set of 𝑁pop strings generated by previous operations,
and replace them with 𝑁elite strings randomly selected from
tentative set of Pareto optimal solutions.

Step 7 (termination test). If one stopping condition in the
following is satisfied, go to Step 8; if not, return to Step 2.

(i) Maximum iterations are exceeded.
(ii) The optimal target value is achieved.

Step 8 (algorithm termination). Exit optimal algorithm.

4. Experimental Results and Analysis

4.1. Evaluation Index. Peak signal-to-noise ratio (PSNR) is
defined as

PSNR = 10𝑙𝑔
255
2

(1/𝑀 × 𝑁)∑
𝑀

𝑖=1
∑
𝑁

𝑗=1
(𝐴 (𝑖, 𝑗) − 𝑂 (𝑖, 𝑗))

2
.

(18)

Here, 𝑂 is original image with size of𝑀 × 𝑁 pixels, 𝐴 is
filtered image of noised image, and (𝑖, 𝑗) are coordinates of
pixels.

4.2. Experimental Results. To verify the validity of the algo-
rithm, this paper designed two kinds of experimental meth-
ods to verify its effectiveness. One is use of objective data such
as PNSR andMSE to objectively analyze its performance; and
the other is making us able to obverse filtering performance
directly by naked eyes [19–21].

Experiment 1. We did filtering experiments on standard
images Lena and Barbara in different noise level and listed
results in Table 1. As we have seen from Table 1, PSNR of
proposed algorithm (Shearlet-MOGA) is higher than PSNR
of classical Shearlet algorithm, and its performance will be
better with noise level increased.

Figure 2 is the original MR image we adopted to do
experiments. Adding different noise level to Figure 2, we did
filtering work by classical Shearlet and proposed algorithm in
this paper and showed the statics data of MSE and PSNR as
Tables 2 and 3.

In Table 2, the excellent effect of our algorithm is
dramatic, shown in and our proposed MSE is smaller than
classical Shearlet algorithm. Similar good results were found
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Table 2: MSE in different 𝜎 (%) and different algorithm to that in Figure 2.

Noise level (%) 5 10 20 30 40 50 60 70 80 90
Classical 25.12 100.4 400.7 905.4 1584 2504 3579 4901 6398 8075
Proposed 10.8 26.52 73.96 147.6 240.9 381 528 705.9 910.7 1132

Table 3: PSNR in different 𝜎 (%) and different algorithm to that in Figure 2.

Noise level (%) 5 10 20 30 40 50 60 70 80 90
Classical 34.13 28.11 22.1 18.56 16.13 14.14 12.59 11.23 10.07 9.059
Proposed 40.38 35.93 31.21 28.03 25.77 23.66 22.16 20.82 19.65 18.65

when the same experiment was repeated on PSNR. In Table 3,
the PSNR of proposed algorithm is greater than that of
classical Shearlet algorithm.

Experiment 2. To evaluate the performance of proposed
algorithmby naked eyes directly, several classical images such
as Lena, Baboon, Barbara, andMRI are adopted to do filtering
work, and all relative images are shown in Figure 3.

Figure 3(a) is the original Lena. Adding 5% Rician noise
level to Lena, we get Figure 3(b).

Filtering Figure 3(b) by classical Shearlet algorithm, we
got Figure 3(c). Figure 3(d) is the output of the filtering work
we did to Figure 3(b) by proposed algorithm.

We did similar experiment to the image of Baboon. Add
10%Rician noise level to Baboon, we get Figure 3(e). Filtering
Figure 3(f) by classical Shearlet algorithm, we got Figure 3(g).
Figure 3(h) is the output of the filtering work we did to
Figure 3(f) by proposed algorithm.

The image of Barbara is also adopted by us to test our
algorithm. Figure 3(i) is the original Barbara. Figure 3(j) is
Barbara noised by 15% Rician noise level. Filtering Figure 3(j)
by classical Shearlet algorithm, we got Figure 3(k). Figure 3(l)
is the output of the filtering work we did to Figure 3(j) by
proposed algorithm.

At last, we measured our algorithm performance onMRI
image. Figure 3(m) is the original MRI. Figure 3(n) is the
MRI noised by 20% Rician noise level. Filtering Figure 3(n)
by classical Shearlet algorithm,we got Figure 3(o). Figure 3(p)
is the output of the filtering work we did to Figure 3(n) by
proposed algorithm.

Through simple comparison, we can see that our pro-
posed algorithm could effectively remove the noise from
the degraded image of Rician noise with unknown intensity
level and protect the image details better at the same time.
To MRI image, experiments Paying particular attention data
show that our algorithm has excellent performance in back-
ground. After strict analysis, we concluded that our algorithm
retained the consistent component of low frequency in
frequency domain by low-pass filtering, and background of
MRI has this nature.

5. Conclusions

In order to eliminate Rician noise and preserve image details
as much as possible, this paper proposed a new image-
filtering algorithm based on MOGA and classical Shearlet

transform. It builds target functions in MOGA by several
evaluation methods such as SNR and MSE. It also uses
MOGA tofindoptimal Shearletwavelet threshold coefficients
in a different scale and different orientation. Computer
simulations results are given to verify the effectiveness of this
algorithm. At last, experiments data show that our algorithm
has excellent performance in MRI imaging.
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