45,566 research outputs found

    Automatic detection of arcs and arclets formed by gravitational lensing

    Full text link
    We present an algorithm developed particularly to detect gravitationally lensed arcs in clusters of galaxies. This algorithm is suited for automated surveys as well as individual arc detections. New methods are used for image smoothing and source detection. The smoothing is performed by so-called anisotropic diffusion, which maintains the shape of the arcs and does not disperse them. The algorithm is much more efficient in detecting arcs than other source finding algorithms and the detection by eye.Comment: A&A in press, 12 pages, 16 figure

    On the segmentation of astronomical images via level-set methods

    Full text link
    Astronomical images are of crucial importance for astronomers since they contain a lot of information about celestial bodies that can not be directly accessible. Most of the information available for the analysis of these objects starts with sky explorations via telescopes and satellites. Unfortunately, the quality of astronomical images is usually very low with respect to other real images and this is due to technical and physical features related to their acquisition process. This increases the percentage of noise and makes more difficult to use directly standard segmentation methods on the original image. In this work we will describe how to process astronomical images in two steps: in the first step we improve the image quality by a rescaling of light intensity whereas in the second step we apply level-set methods to identify the objects. Several experiments will show the effectiveness of this procedure and the results obtained via various discretization techniques for level-set equations.Comment: 24 pages, 59 figures, paper submitte

    Multi Resonant Boundary Contour System

    Full text link

    A Neural Network Architecture for Figure-ground Separation of Connected Scenic Figures

    Full text link
    A neural network model, called an FBF network, is proposed for automatic parallel separation of multiple image figures from each other and their backgrounds in noisy grayscale or multi-colored images. The figures can then be processed in parallel by an array of self-organizing Adaptive Resonance Theory (ART) neural networks for automatic target recognition. An FBF network can automatically separate the disconnected but interleaved spirals that Minsky and Papert introduced in their book Perceptrons. The network's design also clarifies why humans cannot rapidly separate interleaved spirals, yet can rapidly detect conjunctions of disparity and color, or of disparity and motion, that distinguish target figures from surrounding distractors. Figure-ground separation is accomplished by iterating operations of a Feature Contour System (FCS) and a Boundary Contour System (BCS) in the order FCS-BCS-FCS, hence the term FBF, that have been derived from an analysis of biological vision. The FCS operations include the use of nonlinear shunting networks to compensate for variable illumination and nonlinear diffusion networks to control filling-in. A key new feature of an FBF network is the use of filling-in for figure-ground separation. The BCS operations include oriented filters joined to competitive and cooperative interactions designed to detect, regularize, and complete boundaries in up to 50 percent noise, while suppressing the noise. A modified CORT-X filter is described which uses both on-cells and off-cells to generate a boundary segmentation from a noisy image.Air Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (90-0083); Hughes Research Laboratories (S1-804481-D, S1-903136); American Society for Engineering Educatio
    • …
    corecore