1,163 research outputs found

    Image Hash Minimization for Tamper Detection

    Full text link
    Tamper detection using image hash is a very common problem of modern days. Several research and advancements have already been done to address this problem. However, most of the existing methods lack the accuracy of tamper detection when the tampered area is low, as well as requiring long image hashes. In this paper, we propose a novel method objectively to minimize the hash length while enhancing the performance at low tampered area.Comment: Published at the 9th International Conference on Advances in Pattern Recognition, 201

    Preserving Trustworthiness and Confidentiality for Online Multimedia

    Get PDF
    Technology advancements in areas of mobile computing, social networks, and cloud computing have rapidly changed the way we communicate and interact. The wide adoption of media-oriented mobile devices such as smartphones and tablets enables people to capture information in various media formats, and offers them a rich platform for media consumption. The proliferation of online services and social networks makes it possible to store personal multimedia collection online and share them with family and friends anytime anywhere. Considering the increasing impact of digital multimedia and the trend of cloud computing, this dissertation explores the problem of how to evaluate trustworthiness and preserve confidentiality of online multimedia data. The dissertation consists of two parts. The first part examines the problem of evaluating trustworthiness of multimedia data distributed online. Given the digital nature of multimedia data, editing and tampering of the multimedia content becomes very easy. Therefore, it is important to analyze and reveal the processing history of a multimedia document in order to evaluate its trustworthiness. We propose a new forensic technique called ``Forensic Hash", which draws synergy between two related research areas of image hashing and non-reference multimedia forensics. A forensic hash is a compact signature capturing important information from the original multimedia document to assist forensic analysis and reveal processing history of a multimedia document under question. Our proposed technique is shown to have the advantage of being compact and offering efficient and accurate analysis to forensic questions that cannot be easily answered by convention forensic techniques. The answers that we obtain from the forensic hash provide valuable information on the trustworthiness of online multimedia data. The second part of this dissertation addresses the confidentiality issue of multimedia data stored with online services. The emerging cloud computing paradigm makes it attractive to store private multimedia data online for easy access and sharing. However, the potential of cloud services cannot be fully reached unless the issue of how to preserve confidentiality of sensitive data stored in the cloud is addressed. In this dissertation, we explore techniques that enable confidentiality-preserving search of encrypted multimedia, which can play a critical role in secure online multimedia services. Techniques from image processing, information retrieval, and cryptography are jointly and strategically applied to allow efficient rank-ordered search over encrypted multimedia database and at the same time preserve data confidentiality against malicious intruders and service providers. We demonstrate high efficiency and accuracy of the proposed techniques and provide a quantitative comparative study with conventional techniques based on heavy-weight cryptography primitives

    Reviewing the Effectivity Factor in Existing Techniques of Image Forensics

    Get PDF
    Studies towards image forensics are about a decade old and various forms of research techniques have been presented till date towards image forgery detection. Majority of the existing techniques deals with identification of tampered regions using different forms of research methodologies. However, it is still an open-end question about the effectiveness of existing image forgery detection techniques as there is no reported benchmarked outcome till date about it. Therefore, the present manuscript discusses about the most frequently addressed image attacks e.g. image splicing and copy-move attack and elaborates the existing techniques presented by research community to resist it. The paper also contributes to explore the direction of present research trend with respect to tool adoption, database adoption, and technique adoption, and frequently used attack scenario. Finally, significant open research gap are explored after reviewing effectiveness of existing techniques

    Video copy-move forgery detection scheme based on displacement paths

    Get PDF
    Sophisticated digital video editing tools has made it easier to tamper real videos and create perceptually indistinguishable fake ones. Even worse, some post-processing effects, which include object insertion and deletion in order to mimic or hide a specific event in the video frames, are also prevalent. Many attempts have been made to detect such as video copy-move forgery to date; however, the accuracy rates are still inadequate and rooms for improvement are wide-open and its effectiveness is confined to the detection of frame tampering and not localization of the tampered regions. Thus, a new detection scheme was developed to detect forgery and improve accuracy. The scheme involves seven main steps. First, it converts the red, green and blue (RGB) video into greyscale frames and treats them as images. Second, it partitions each frame into non-overlapping blocks of sized 8x8 pixels each. Third, for each two successive frames (S2F), it tracks every block’s duplicate using the proposed two-tier detection technique involving Diamond search and Slantlet transform to locate the duplicated blocks. Fourth, for each pair of the duplicated blocks of the S2F, it calculates a displacement using optical flow concept. Fifth, based on the displacement values and empirically calculated threshold, the scheme detects existence of any deleted objects found in the frames. Once completed, it then extracts the moving object using the same threshold-based approach. Sixth, a frame-by-frame displacement tracking is performed to trace the object movement and find a displacement path of the moving object. The process is repeated for another group of frames to find the next displacement path of the second moving object until all the frames are exhausted. Finally, the displacement paths are compared between each other using Dynamic Time Warping (DTW) matching algorithm to detect the cloning object. If any pair of the displacement paths are perfectly matched then a clone is found. To validate the process, a series of experiments based on datasets from Surrey University Library for Forensic Analysis (SULFA) and Video Tampering Dataset (VTD) were performed to gauge the performance of the proposed scheme. The experimental results of the detection scheme were very encouraging with an accuracy rate of 96.86%, which markedly outperformed the state-of-the-art methods by as much as 3.14%

    A survey on passive digital video forgery detection techniques

    Get PDF
    Digital media devices such as smartphones, cameras, and notebooks are becoming increasingly popular. Through digital platforms such as Facebook, WhatsApp, Twitter, and others, people share digital images, videos, and audio in large quantities. Especially in a crime scene investigation, digital evidence plays a crucial role in a courtroom. Manipulating video content with high-quality software tools is easier, which helps fabricate video content more efficiently. It is therefore necessary to develop an authenticating method for detecting and verifying manipulated videos. The objective of this paper is to provide a comprehensive review of the passive methods for detecting video forgeries. This survey has the primary goal of studying and analyzing the existing passive techniques for detecting video forgeries. First, an overview of the basic information needed to understand video forgery detection is presented. Later, it provides an in-depth understanding of the techniques used in the spatial, temporal, and spatio-temporal domain analysis of videos, datasets used, and their limitations are reviewed. In the following sections, standard benchmark video forgery datasets and the generalized architecture for passive video forgery detection techniques are discussed in more depth. Finally, identifying loopholes in existing surveys so detecting forged videos much more effectively in the future are discussed

    Privacy Intelligence: A Survey on Image Sharing on Online Social Networks

    Full text link
    Image sharing on online social networks (OSNs) has become an indispensable part of daily social activities, but it has also led to an increased risk of privacy invasion. The recent image leaks from popular OSN services and the abuse of personal photos using advanced algorithms (e.g. DeepFake) have prompted the public to rethink individual privacy needs when sharing images on OSNs. However, OSN image sharing itself is relatively complicated, and systems currently in place to manage privacy in practice are labor-intensive yet fail to provide personalized, accurate and flexible privacy protection. As a result, an more intelligent environment for privacy-friendly OSN image sharing is in demand. To fill the gap, we contribute a systematic survey of 'privacy intelligence' solutions that target modern privacy issues related to OSN image sharing. Specifically, we present a high-level analysis framework based on the entire lifecycle of OSN image sharing to address the various privacy issues and solutions facing this interdisciplinary field. The framework is divided into three main stages: local management, online management and social experience. At each stage, we identify typical sharing-related user behaviors, the privacy issues generated by those behaviors, and review representative intelligent solutions. The resulting analysis describes an intelligent privacy-enhancing chain for closed-loop privacy management. We also discuss the challenges and future directions existing at each stage, as well as in publicly available datasets.Comment: 32 pages, 9 figures. Under revie
    corecore