7,424 research outputs found

    Collaborative Representation Classification Ensemble for Face Recognition

    Full text link
    Collaborative Representation Classification (CRC) for face recognition attracts a lot attention recently due to its good recognition performance and fast speed. Compared to Sparse Representation Classification (SRC), CRC achieves a comparable recognition performance with 10-1000 times faster speed. In this paper, we propose to ensemble several CRC models to promote the recognition rate, where each CRC model uses different and divergent randomly generated biologically-inspired features as the face representation. The proposed ensemble algorithm calculates an ensemble weight for each CRC model that guided by the underlying classification rule of CRC. The obtained weights reflect the confidences of those CRC models where the more confident CRC models have larger weights. The proposed weighted ensemble method proves to be very effective and improves the performance of each CRC model significantly. Extensive experiments are conducted to show the superior performance of the proposed method.Comment: 6 page

    Discriminative Local Sparse Representations for Robust Face Recognition

    Full text link
    A key recent advance in face recognition models a test face image as a sparse linear combination of a set of training face images. The resulting sparse representations have been shown to possess robustness against a variety of distortions like random pixel corruption, occlusion and disguise. This approach however makes the restrictive (in many scenarios) assumption that test faces must be perfectly aligned (or registered) to the training data prior to classification. In this paper, we propose a simple yet robust local block-based sparsity model, using adaptively-constructed dictionaries from local features in the training data, to overcome this misalignment problem. Our approach is inspired by human perception: we analyze a series of local discriminative features and combine them to arrive at the final classification decision. We propose a probabilistic graphical model framework to explicitly mine the conditional dependencies between these distinct sparse local features. In particular, we learn discriminative graphs on sparse representations obtained from distinct local slices of a face. Conditional correlations between these sparse features are first discovered (in the training phase), and subsequently exploited to bring about significant improvements in recognition rates. Experimental results obtained on benchmark face databases demonstrate the effectiveness of the proposed algorithms in the presence of multiple registration errors (such as translation, rotation, and scaling) as well as under variations of pose and illumination

    Structured Occlusion Coding for Robust Face Recognition

    Full text link
    Occlusion in face recognition is a common yet challenging problem. While sparse representation based classification (SRC) has been shown promising performance in laboratory conditions (i.e. noiseless or random pixel corrupted), it performs much worse in practical scenarios. In this paper, we consider the practical face recognition problem, where the occlusions are predictable and available for sampling. We propose the structured occlusion coding (SOC) to address occlusion problems. The structured coding here lies in two folds. On one hand, we employ a structured dictionary for recognition. On the other hand, we propose to use the structured sparsity in this formulation. Specifically, SOC simultaneously separates the occlusion and classifies the image. In this way, the problem of recognizing an occluded image is turned into seeking a structured sparse solution on occlusion-appended dictionary. In order to construct a well-performing occlusion dictionary, we propose an occlusion mask estimating technique via locality constrained dictionary (LCD), showing striking improvement in occlusion sample. On a category-specific occlusion dictionary, we replace norm sparsity with the structured sparsity which is shown more robust, further enhancing the robustness of our approach. Moreover, SOC achieves significant improvement in handling large occlusion in real world. Extensive experiments are conducted on public data sets to validate the superiority of the proposed algorithm

    From BoW to CNN: Two Decades of Texture Representation for Texture Classification

    Full text link
    Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and challenging problems in computer vision and pattern recognition which has attracted extensive research attention. Since 2000, texture representations based on Bag of Words (BoW) and on Convolutional Neural Networks (CNNs) have been extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a comprehensive survey of advances in texture representation over the last two decades. More than 200 major publications are cited in this survey covering different aspects of the research, which includes (i) problem description; (ii) recent advances in the broad categories of BoW-based, CNN-based and attribute-based methods; and (iii) evaluation issues, specifically benchmark datasets and state of the art results. In retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.Comment: Accepted by IJC

    Joint Projection and Dictionary Learning using Low-rank Regularization and Graph Constraints

    Full text link
    In this paper, we aim at learning simultaneously a discriminative dictionary and a robust projection matrix from noisy data. The joint learning, makes the learned projection and dictionary a better fit for each other, so a more accurate classification can be obtained. However, current prevailing joint dimensionality reduction and dictionary learning methods, would fail when the training samples are noisy or heavily corrupted. To address this issue, we propose a joint projection and dictionary learning using low-rank regularization and graph constraints (JPDL-LR). Specifically, the discrimination of the dictionary is achieved by imposing Fisher criterion on the coding coefficients. In addition, our method explicitly encodes the local structure of data by incorporating a graph regularization term, that further improves the discriminative ability of the projection matrix. Inspired by recent advances of low-rank representation for removing outliers and noise, we enforce a low-rank constraint on sub-dictionaries of all classes to make them more compact and robust to noise. Experimental results on several benchmark datasets verify the effectiveness and robustness of our method for both dimensionality reduction and image classification, especially when the data contains considerable noise or variations

    Sparse Illumination Learning and Transfer for Single-Sample Face Recognition with Image Corruption and Misalignment

    Full text link
    Single-sample face recognition is one of the most challenging problems in face recognition. We propose a novel algorithm to address this problem based on a sparse representation based classification (SRC) framework. The new algorithm is robust to image misalignment and pixel corruption, and is able to reduce required gallery images to one sample per class. To compensate for the missing illumination information traditionally provided by multiple gallery images, a sparse illumination learning and transfer (SILT) technique is introduced. The illumination in SILT is learned by fitting illumination examples of auxiliary face images from one or more additional subjects with a sparsely-used illumination dictionary. By enforcing a sparse representation of the query image in the illumination dictionary, the SILT can effectively recover and transfer the illumination and pose information from the alignment stage to the recognition stage. Our extensive experiments have demonstrated that the new algorithms significantly outperform the state of the art in the single-sample regime and with less restrictions. In particular, the single-sample face alignment accuracy is comparable to that of the well-known Deformable SRC algorithm using multiple gallery images per class. Furthermore, the face recognition accuracy exceeds those of the SRC and Extended SRC algorithms using hand labeled alignment initialization

    Robust and Low-Rank Representation for Fast Face Identification with Occlusions

    Full text link
    In this paper we propose an iterative method to address the face identification problem with block occlusions. Our approach utilizes a robust representation based on two characteristics in order to model contiguous errors (e.g., block occlusion) effectively. The first fits to the errors a distribution described by a tailored loss function. The second describes the error image as having a specific structure (resulting in low-rank in comparison to image size). We will show that this joint characterization is effective for describing errors with spatial continuity. Our approach is computationally efficient due to the utilization of the Alternating Direction Method of Multipliers (ADMM). A special case of our fast iterative algorithm leads to the robust representation method which is normally used to handle non-contiguous errors (e.g., pixel corruption). Extensive results on representative face databases (in constrained and unconstrained environments) document the effectiveness of our method over existing robust representation methods with respect to both identification rates and computational time. Code is available at Github, where you can find implementations of the F-LR-IRNNLS and F-IRNNLS (fast version of the RRC) : https://github.com/miliadis/FIRCComment: IEEE Transactions on Image Processing (TIP), 201

    Learning Locality-Constrained Collaborative Representation for Face Recognition

    Full text link
    The model of low-dimensional manifold and sparse representation are two well-known concise models that suggest each data can be described by a few characteristics. Manifold learning is usually investigated for dimension reduction by preserving some expected local geometric structures from the original space to a low-dimensional one. The structures are generally determined by using pairwise distance, e.g., Euclidean distance. Alternatively, sparse representation denotes a data point as a linear combination of the points from the same subspace. In practical applications, however, the nearby points in terms of pairwise distance may not belong to the same subspace, and vice versa. Consequently, it is interesting and important to explore how to get a better representation by integrating these two models together. To this end, this paper proposes a novel coding algorithm, called Locality-Constrained Collaborative Representation (LCCR), which improves the robustness and discrimination of data representation by introducing a kind of local consistency. The locality term derives from a biologic observation that the similar inputs have similar code. The objective function of LCCR has an analytical solution, and it does not involve local minima. The empirical studies based on four public facial databases, ORL, AR, Extended Yale B, and Multiple PIE, show that LCCR is promising in recognizing human faces from frontal views with varying expression and illumination, as well as various corruptions and occlusions.Comment: 16 pages, v

    Optimal Sensor Placement and Enhanced Sparsity for Classification

    Full text link
    The goal of compressive sensing is efficient reconstruction of data from few measurements, sometimes leading to a categorical decision. If only classification is required, reconstruction can be circumvented and the measurements needed are orders-of-magnitude sparser still. We define enhanced sparsity as the reduction in number of measurements required for classification over reconstruction. In this work, we exploit enhanced sparsity and learn spatial sensor locations that optimally inform a categorical decision. The algorithm solves an l1-minimization to find the fewest entries of the full measurement vector that exactly reconstruct the discriminant vector in feature space. Once the sensor locations have been identified from the training data, subsequent test samples are classified with remarkable efficiency, achieving performance comparable to that obtained by discrimination using the full image. Sensor locations may be learned from full images, or from a random subsample of pixels. For classification between more than two categories, we introduce a coupling parameter whose value tunes the number of sensors selected, trading accuracy for economy. We demonstrate the algorithm on example datasets from image recognition using PCA for feature extraction and LDA for discrimination; however, the method can be broadly applied to non-image data and adapted to work with other methods for feature extraction and discrimination.Comment: 13 pages, 11 figure
    corecore