7,183 research outputs found

    Evaluating color texture descriptors under large variations of controlled lighting conditions

    Full text link
    The recognition of color texture under varying lighting conditions is still an open issue. Several features have been proposed for this purpose, ranging from traditional statistical descriptors to features extracted with neural networks. Still, it is not completely clear under what circumstances a feature performs better than the others. In this paper we report an extensive comparison of old and new texture features, with and without a color normalization step, with a particular focus on how they are affected by small and large variation in the lighting conditions. The evaluation is performed on a new texture database including 68 samples of raw food acquired under 46 conditions that present single and combined variations of light color, direction and intensity. The database allows to systematically investigate the robustness of texture descriptors across a large range of variations of imaging conditions.Comment: Submitted to the Journal of the Optical Society of America

    Joint Learning of Intrinsic Images and Semantic Segmentation

    Get PDF
    Semantic segmentation of outdoor scenes is problematic when there are variations in imaging conditions. It is known that albedo (reflectance) is invariant to all kinds of illumination effects. Thus, using reflectance images for semantic segmentation task can be favorable. Additionally, not only segmentation may benefit from reflectance, but also segmentation may be useful for reflectance computation. Therefore, in this paper, the tasks of semantic segmentation and intrinsic image decomposition are considered as a combined process by exploring their mutual relationship in a joint fashion. To that end, we propose a supervised end-to-end CNN architecture to jointly learn intrinsic image decomposition and semantic segmentation. We analyze the gains of addressing those two problems jointly. Moreover, new cascade CNN architectures for intrinsic-for-segmentation and segmentation-for-intrinsic are proposed as single tasks. Furthermore, a dataset of 35K synthetic images of natural environments is created with corresponding albedo and shading (intrinsics), as well as semantic labels (segmentation) assigned to each object/scene. The experiments show that joint learning of intrinsic image decomposition and semantic segmentation is beneficial for both tasks for natural scenes. Dataset and models are available at: https://ivi.fnwi.uva.nl/cv/intrinsegComment: ECCV 201

    Reflectance Hashing for Material Recognition

    Full text link
    We introduce a novel method for using reflectance to identify materials. Reflectance offers a unique signature of the material but is challenging to measure and use for recognizing materials due to its high-dimensionality. In this work, one-shot reflectance is captured using a unique optical camera measuring {\it reflectance disks} where the pixel coordinates correspond to surface viewing angles. The reflectance has class-specific stucture and angular gradients computed in this reflectance space reveal the material class. These reflectance disks encode discriminative information for efficient and accurate material recognition. We introduce a framework called reflectance hashing that models the reflectance disks with dictionary learning and binary hashing. We demonstrate the effectiveness of reflectance hashing for material recognition with a number of real-world materials

    A Joint 3D-2D based Method for Free Space Detection on Roads

    Full text link
    In this paper, we address the problem of road segmentation and free space detection in the context of autonomous driving. Traditional methods either use 3-dimensional (3D) cues such as point clouds obtained from LIDAR, RADAR or stereo cameras or 2-dimensional (2D) cues such as lane markings, road boundaries and object detection. Typical 3D point clouds do not have enough resolution to detect fine differences in heights such as between road and pavement. Image based 2D cues fail when encountering uneven road textures such as due to shadows, potholes, lane markings or road restoration. We propose a novel free road space detection technique combining both 2D and 3D cues. In particular, we use CNN based road segmentation from 2D images and plane/box fitting on sparse depth data obtained from SLAM as priors to formulate an energy minimization using conditional random field (CRF), for road pixels classification. While the CNN learns the road texture and is unaffected by depth boundaries, the 3D information helps in overcoming texture based classification failures. Finally, we use the obtained road segmentation with the 3D depth data from monocular SLAM to detect the free space for the navigation purposes. Our experiments on KITTI odometry dataset, Camvid dataset, as well as videos captured by us, validate the superiority of the proposed approach over the state of the art.Comment: Accepted for publication at IEEE WACV 201

    Side-View Face Recognition

    Get PDF
    Side-view face recognition is a challenging problem with many applications. Especially in real-life scenarios where the environment is uncontrolled, coping with pose variations up to side-view positions is an important task for face recognition. In this paper we discuss the use of side view face recognition techniques to be used in house safety applications. Our aim is to recognize people as they pass through a door, and estimate their location in the house. Here, we compare available databases appropriate for this task, and review current methods for profile face recognition
    • ā€¦
    corecore