3 research outputs found

    DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors for Change Detection

    Full text link
    Remote sensing change detection is crucial for understanding the dynamics of our planet's surface, facilitating the monitoring of environmental changes, evaluating human impact, predicting future trends, and supporting decision-making. In this work, we introduce a novel approach for change detection that can leverage off-the-shelf, unlabeled remote sensing images in the training process by pre-training a Denoising Diffusion Probabilistic Model (DDPM) - a class of generative models used in image synthesis. DDPMs learn the training data distribution by gradually converting training images into a Gaussian distribution using a Markov chain. During inference (i.e., sampling), they can generate a diverse set of samples closer to the training distribution, starting from Gaussian noise, achieving state-of-the-art image synthesis results. However, in this work, our focus is not on image synthesis but on utilizing it as a pre-trained feature extractor for the downstream application of change detection. Specifically, we fine-tune a lightweight change classifier utilizing the feature representations produced by the pre-trained DDPM alongside change labels. Experiments conducted on the LEVIR-CD, WHU-CD, DSIFN-CD, and CDD datasets demonstrate that the proposed DDPM-CD method significantly outperforms the existing state-of-the-art change detection methods in terms of F1 score, IoU, and overall accuracy, highlighting the pivotal role of pre-trained DDPM as a feature extractor for downstream applications. We have made both the code and pre-trained models available at https://github.com/wgcban/ddpm-cdComment: Code available at: https://github.com/wgcban/ddpm-c

    Illumination and Contrast Balancing for Remote Sensing Images

    No full text
    Building a mathematical model of uneven illumination and contrast is difficult, even impossible. This paper presents a novel image balancing method for a satellite image. The method adjusts the mean and standard deviation of a neighborhood at each pixel and consists of three steps, namely, elimination of coarse light background, image balancing, and max-mean-min radiation correction. First, the light background is roughly eliminated in the frequency domain. Then, two balancing factors and linear transformation are used to adaptively adjust the local mean and standard deviation of each pixel. The balanced image is obtained by using a color preserving factor after max-mean-min radiation correction. Experimental results from visual and objective aspects based on images with varying unevenness of illumination and contrast indicate that the proposed method can eliminate uneven illumination and contrast more effectively than traditional image enhancement methods, and provide high quality images with better visual performance. In addition, the proposed method not only restores color information, but also retains image details
    corecore