4 research outputs found

    Revealing intra-urban spatial structure through an exploratory analysis by combining road network abstraction model and taxi trajectory data

    Full text link
    The unprecedented urbanization in China has dramatically changed the urban spatial structure of cities. With the proliferation of individual-level geospatial big data, previous studies have widely used the network abstraction model to reveal the underlying urban spatial structure. However, the construction of network abstraction models primarily focuses on the topology of the road network without considering individual travel flows along with the road networks. Individual travel flows reflect the urban dynamics, which can further help understand the underlying spatial structure. This study therefore aims to reveal the intra-urban spatial structure by integrating the road network abstraction model and individual travel flows. To achieve this goal, we 1) quantify the spatial interaction relatedness of road segments based on the Word2Vec model using large volumes of taxi trip data, then 2) characterize the road abstraction network model according to the identified spatial interaction relatedness, and 3) implement a community detection algorithm to reveal sub-regions of a city. Our results reveal three levels of hierarchical spatial structures in the Wuhan metropolitan area. This study provides a data-driven approach to the investigation of urban spatial structure via identifying traffic interaction patterns on the road network, offering insights to urban planning practice and transportation management

    Graph convolutional networks for street network analysis with a case study of urban polycentricity in Chinese cities

    Get PDF
    Graph theory effectively explains urban structures via street–street connectivity. However, systematic comparisons of street structures across cities remain challenging. This study employs graph convolutional networks (GCNs) to analyze street network structures. A two-branch GCN was used as the backbone to extract comparable features among street networks. The proposed approach was used to examine the structures of different urban road networks in a case study of polycentricity prediction across 298 Chinese cities. The model transformed approximately 4.5-million street segments into natural streets to create urban street graphs, which were subsequently analyzed to extract local and global embeddings. The extracted embeddings – with a portion labeled with a known urban polycentricity score – were used to predict the score for each city through a single-layer perceptron (SLP) model. Our results show consistency between the predicted polycentricity scores based on the derived street embeddings and those based on the population. Thus, the proposed GCN-based method can effectively predict the complexity and interconnection of street networks in different cities. This innovative integration of GCNs into urban studies demonstrates that deep learning techniques can analyze and comprehend the intricate patterns of street networks on a large scale

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change

    Mobility mining for time-dependent urban network modeling

    Get PDF
    170 p.Mobility planning, monitoring and analysis in such a complex ecosystem as a city are very challenging.Our contributions are expected to be a small step forward towards a more integrated vision of mobilitymanagement. The main hypothesis behind this thesis is that the transportation offer and the mobilitydemand are greatly coupled, and thus, both need to be thoroughly and consistently represented in a digitalmanner so as to enable good quality data-driven advanced analysis. Data-driven analytics solutions relyon measurements. However, sensors do only provide a measure of movements that have already occurred(and associated magnitudes, such as vehicles per hour). For a movement to happen there are two mainrequirements: i) the demand (the need or interest) and ii) the offer (the feasibility and resources). Inaddition, for good measurement, the sensor needs to be located at an adequate location and be able tocollect data at the right moment. All this information needs to be digitalised accordingly in order to applyadvanced data analytic methods and take advantage of good digital transportation resource representation.Our main contributions, focused on mobility data mining over urban transportation networks, can besummarised in three groups. The first group consists of a comprehensive description of a digitalmultimodal transport infrastructure representation from global and local perspectives. The second groupis oriented towards matching diverse sensor data onto the transportation network representation,including a quantitative analysis of map-matching algorithms. The final group of contributions covers theprediction of short-term demand based on various measures of urban mobility
    corecore