850 research outputs found

    Learning pair-wise gene functional similarity by multiplex gene expression maps

    Get PDF
    Abstract Background The relationships between the gene functional similarity and gene expression profile, and between gene function annotation and gene sequence have been studied extensively. However, not much work has considered the connection between gene functions and location of a gene's expression in the mammalian tissues. On the other hand, although unsupervised learning methods have been commonly used in functional genomics, supervised learning cannot be directly applied to a set of normal genes without having a target (class) attribute. Results Here, we propose a supervised learning methodology to predict pair-wise gene functional similarity from multiplex gene expression maps that provide information about the location of gene expression. The features are extracted from expression maps and the labels denote the functional similarities of pairs of genes. We make use of wavelet features, original expression values, difference and average values of neighboring voxels and other features to perform boosting analysis. The experimental results show that with increasing similarities of gene expression maps, the functional similarities are increased too. The model predicts the functional similarities between genes to a certain degree. The weights of the features in the model indicate the features that are more significant for this prediction. Conclusions By considering pairs of genes, we propose a supervised learning methodology to predict pair-wise gene functional similarity from multiplex gene expression maps. We also explore the relationship between similarities of gene maps and gene functions. By using AdaBoost coupled with our proposed weak classifier we analyze a large-scale gene expression dataset and predict gene functional similarities. We also detect the most significant single voxels and pairs of neighboring voxels and visualize them in the expression map image of a mouse brain. This work is very important for predicting functions of unknown genes. It also has broader applicability since the methodology can be applied to analyze any large-scale dataset without a target attribute and is not restricted to gene expressions

    Morphological Profiling for Drug Discovery in the Era of Deep Learning

    Full text link
    Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial improvements in analyzing large-scale high-content images at high-throughput. These efforts have facilitated understanding of compound mechanism-of-action (MOA), drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies encompassing feature engineering- and deep learning-based approaches, and introduce publicly available benchmark datasets. We place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery and highlight potential challenges and opportunities in this field.Comment: 44 pages, 5 figure, 5 table

    Deep Learning in Single-Cell Analysis

    Full text link
    Single-cell technologies are revolutionizing the entire field of biology. The large volumes of data generated by single-cell technologies are high-dimensional, sparse, heterogeneous, and have complicated dependency structures, making analyses using conventional machine learning approaches challenging and impractical. In tackling these challenges, deep learning often demonstrates superior performance compared to traditional machine learning methods. In this work, we give a comprehensive survey on deep learning in single-cell analysis. We first introduce background on single-cell technologies and their development, as well as fundamental concepts of deep learning including the most popular deep architectures. We present an overview of the single-cell analytic pipeline pursued in research applications while noting divergences due to data sources or specific applications. We then review seven popular tasks spanning through different stages of the single-cell analysis pipeline, including multimodal integration, imputation, clustering, spatial domain identification, cell-type deconvolution, cell segmentation, and cell-type annotation. Under each task, we describe the most recent developments in classical and deep learning methods and discuss their advantages and disadvantages. Deep learning tools and benchmark datasets are also summarized for each task. Finally, we discuss the future directions and the most recent challenges. This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.Comment: 77 pages, 11 figures, 15 tables, deep learning, single-cell analysi

    Identifying disease-associated genes based on artificial intelligence

    Get PDF
    Identifying disease-gene associations can help improve the understanding of disease mechanisms, which has a variety of applications, such as early diagnosis and drug development. Although experimental techniques, such as linkage analysis, genome-wide association studies (GWAS), have identified a large number of associations, identifying disease genes is still challenging since experimental methods are usually time-consuming and expensive. To solve these issues, computational methods are proposed to predict disease-gene associations. Based on the characteristics of existing computational algorithms in the literature, we can roughly divide them into three categories: network-based methods, machine learning-based methods, and other methods. No matter what models are used to predict disease genes, the proper integration of multi-level biological data is the key to improving prediction accuracy. This thesis addresses some limitations of the existing computational algorithms, and integrates multi-level data via artificial intelligence techniques. The thesis starts with a comprehensive review of computational methods, databases, and evaluation methods used in predicting disease-gene associations, followed by one network-based method and four machine learning-based methods. The first chapter introduces the background information, objectives of the studies and structure of the thesis. After that, a comprehensive review is provided in the second chapter to discuss the existing algorithms as well as the databases and evaluation methods used in existing studies. Having the objectives and future directions, the thesis then presents five computational methods for predicting disease-gene associations. The first method proposed in Chapter 3 considers the issue of non-disease gene selection. A shortest path-based strategy is used to select reliable non-disease genes from a disease gene network and a differential network. The selected genes are then used by a network-energy model to improve its performance. The second method proposed in Chapter 4 constructs sample-based networks for case samples and uses them to predict disease genes. This strategy improves the quality of protein-protein interaction (PPI) networks, which further improves the prediction accuracy. Chapter 5 presents a generic model which applies multimodal deep belief nets (DBN) to fuse different types of data. Network embeddings extracted from PPI networks and gene ontology (GO) data are fused with the multimodal DBN to obtain cross-modality representations. Chapter 6 presents another deep learning model which uses a convolutional neural network (CNN) to integrate gene similarities with other types of data. Finally, the fifth method proposed in Chapter 7 is a nonnegative matrix factorization (NMF)-based method. This method maps diseases and genes onto a lower-dimensional manifold, and the geodesic distance between diseases and genes are used to predict their associations. The method can predict disease genes even if the disease under consideration has no known associated genes. In summary, this thesis has proposed several artificial intelligence-based computational algorithms to address the typical issues existing in computational algorithms. Experimental results have shown that the proposed methods can improve the accuracy of disease-gene prediction

    Modeling Complex Patterns of Differential DNA Methylation That Associate with Expression Change

    Get PDF
    Gene expression is driven by specific combinations of transcription factors binding to regulatory sequences to define cell type expression profiles. Changes in DNA sequence alter transcription factor binding affinities and gene expression, and DNA methylation is an additional source of variation that is maintained throughout cellular division. Numerous genomic studies are underway to determine which genes are abnormally regulated by DNA methylation in disease. However, we have a poor understanding of how disease-specific methylation variation affects expression. Global DNA demethylation agents have been clinically approved for use in cancer, which has spurred interest in identifying genes which would be most susceptible for targeted demethylation therapies. In this work, I developed multiple tools to increase our knowledge about the relationship between methylation and gene expression in both tissue specificity and disease. I first developed a computational strategy to identify amplifications and deletions from restriction enzyme-based methylation datasets. In a model of endocrine therapy resistant breast cancer, I identify ESR1 as the most amplified genomic region in response to estrogen deprivation. I develop a qPCR-based assay to probe the amplification in cell lines, formalin-fixed paraffin embedded samples, patient tumors, and xenograft samples. This data is consistent with the hypothesis that in a subset of patients, the ESR1 amplification results in increased levels of ER. These are produced in response to estrogen deprivation to sensitize breast cancer to low available quantities of estrogen for cellular growth. Next, to explain specific variation in methylation that associates with expression change in both disease and tissue-specificity, I developed an integrative analysis tool, Methylation-based Gene Expression Classification (ME-Class). This model captures the complexity of methylation changes around a gene promoter. Using whole-genome bisulfite sequencing and RNA-seq datasets from different tissue samples, ME-Class significantly outperforms published methods using methylation to predict differential gene expression change. To demonstrate its utility, I used ME-Class to analyze different hematopoietic cell types, and identified that expressionassociated methylation changes were predominantly found when comparing cells from distantly related lineages, implying that changes in the cell’s transcriptional program precede associated methylation changes. Training ME-Class on normal-tumor pairs indicated that cancer-specific expression-associated methylation changes differ from tissue-specific changes. I further show that ME-Class can detect functionally relevant cancer-specific, expression-associated methylation changes that are reversed upon the removal of methylation in a model of colon cancer. Lastly, I extended ME-Class to incorporate 5-hydroxymethylcytosine and uncovered gene regulatory logic involving 5hmC and 5mC in mammalian development and disease. As more large-scale, genome-wide, differential DNA methylation studies become available, tools such as ME-class will prove invaluable to understand how specific methylation changes affect transcription. Our results show this toolset can identify genes that are dysregulated by methylation in disease, and could be used to facilitate the identification of patients who may benefit from clinically-approved demethylating therapeutics

    Network-based methods for biological data integration in precision medicine

    Full text link
    [eng] The vast and continuously increasing volume of available biomedical data produced during the last decades opens new opportunities for large-scale modeling of disease biology, facilitating a more comprehensive and integrative understanding of its processes. Nevertheless, this type of modelling requires highly efficient computational systems capable of dealing with such levels of data volumes. Computational approximations commonly used in machine learning and data analysis, namely dimensionality reduction and network-based approaches, have been developed with the goal of effectively integrating biomedical data. Among these methods, network-based machine learning stands out due to its major advantage in terms of biomedical interpretability. These methodologies provide a highly intuitive framework for the integration and modelling of biological processes. This PhD thesis aims to explore the potential of integration of complementary available biomedical knowledge with patient-specific data to provide novel computational approaches to solve biomedical scenarios characterized by data scarcity. The primary focus is on studying how high-order graph analysis (i.e., community detection in multiplex and multilayer networks) may help elucidate the interplay of different types of data in contexts where statistical power is heavily impacted by small sample sizes, such as rare diseases and precision oncology. The central focus of this thesis is to illustrate how network biology, among the several data integration approaches with the potential to achieve this task, can play a pivotal role in addressing this challenge provided its advantages in molecular interpretability. Through its insights and methodologies, it introduces how network biology, and in particular, models based on multilayer networks, facilitates bringing the vision of precision medicine to these complex scenarios, providing a natural approach for the discovery of new biomedical relationships that overcomes the difficulties for the study of cohorts presenting limited sample sizes (data-scarce scenarios). Delving into the potential of current artificial intelligence (AI) and network biology applications to address data granularity issues in the precision medicine field, this PhD thesis presents pivotal research works, based on multilayer networks, for the analysis of two rare disease scenarios with specific data granularities, effectively overcoming the classical constraints hindering rare disease and precision oncology research. The first research article presents a personalized medicine study of the molecular determinants of severity in congenital myasthenic syndromes (CMS), a group of rare disorders of the neuromuscular junction (NMJ). The analysis of severity in rare diseases, despite its importance, is typically neglected due to data availability. In this study, modelling of biomedical knowledge via multilayer networks allowed understanding the functional implications of individual mutations in the cohort under study, as well as their relationships with the causal mutations of the disease and the different levels of severity observed. Moreover, the study presents experimental evidence of the role of a previously unsuspected gene in NMJ activity, validating the hypothetical role predicted using the newly introduced methodologies. The second research article focuses on the applicability of multilayer networks for gene priorization. Enhancing concepts for the analysis of different data granularities firstly introduced in the previous article, the presented research provides a methodology based on the persistency of network community structures in a range of modularity resolution, effectively providing a new framework for gene priorization for patient stratification. In summary, this PhD thesis presents major advances on the use of multilayer network-based approaches for the application of precision medicine to data-scarce scenarios, exploring the potential of integrating extensive available biomedical knowledge with patient-specific data
    • 

    corecore