634 research outputs found

    Multiscale relevance and informative encoding in neuronal spike trains

    Get PDF
    Neuronal responses to complex stimuli and tasks can encompass a wide range of time scales. Understanding these responses requires measures that characterize how the information on these response patterns are represented across multiple temporal resolutions. In this paper we propose a metric -- which we call multiscale relevance (MSR) -- to capture the dynamical variability of the activity of single neurons across different time scales. The MSR is a non-parametric, fully featureless indicator in that it uses only the time stamps of the firing activity without resorting to any a priori covariate or invoking any specific structure in the tuning curve for neural activity. When applied to neural data from the mEC and from the ADn and PoS regions of freely-behaving rodents, we found that neurons having low MSR tend to have low mutual information and low firing sparsity across the correlates that are believed to be encoded by the region of the brain where the recordings were made. In addition, neurons with high MSR contain significant information on spatial navigation and allow to decode spatial position or head direction as efficiently as those neurons whose firing activity has high mutual information with the covariate to be decoded and significantly better than the set of neurons with high local variations in their interspike intervals. Given these results, we propose that the MSR can be used as a measure to rank and select neurons for their information content without the need to appeal to any a priori covariate.Comment: 38 pages, 16 figure

    Toward a social psychophysics of face communication

    Get PDF
    As a highly social species, humans are equipped with a powerful tool for social communication—the face, which can elicit multiple social perceptions in others due to the rich and complex variations of its movements, morphology, and complexion. Consequently, identifying precisely what face information elicits different social perceptions is a complex empirical challenge that has largely remained beyond the reach of traditional research methods. More recently, the emerging field of social psychophysics has developed new methods designed to address this challenge. Here, we introduce and review the foundational methodological developments of social psychophysics, present recent work that has advanced our understanding of the face as a tool for social communication, and discuss the main challenges that lie ahead

    Reconstructing propagation networks with natural diversity and identifying hidden sources

    Get PDF
    Our ability to uncover complex network structure and dynamics from data is fundamental to understanding and controlling collective dynamics in complex systems. Despite recent progress in this area, reconstructing networks with stochastic dynamical processes from limited time series remains to be an outstanding problem. Here we develop a framework based on compressed sensing to reconstruct complex networks on which stochastic spreading dynamics take place. We apply the methodology to a large number of model and real networks, finding that a full reconstruction of inhomogeneous interactions can be achieved from small amounts of polarized (binary) data, a virtue of compressed sensing. Further, we demonstrate that a hidden source that triggers the spreading process but is externally inaccessible can be ascertained and located with high confidence in the absence of direct routes of propagation from it. Our approach thus establishes a paradigm for tracing and controlling epidemic invasion and information diffusion in complex networked systems.Comment: 20 pages and 5 figures. For Supplementary information, please see http://www.nature.com/ncomms/2014/140711/ncomms5323/full/ncomms5323.html#

    MTEDS: Multivariant Time Series-Based Encoder-Decoder System for Anomaly Detection

    Get PDF
    Intrusion detection systems examine the computer or network for potential security vulnerabilities. Time series data is real-valued. The nature of the data influences the type of anomaly detection. As a result, network anomalies are operations that deviate from the norm. These anomalies can cause a wide range of device malfunctions, overloads, and network intrusions. As a result of this, the network\u27s normal operation and services will be disrupted. The paper proposes a new multi-variant time series-based encoder-decoder system for dealing with anomalies in time series data with multiple variables. As a result, to update network weights via backpropagation, a radical loss function is defined. Anomaly scores are used to evaluate performance. The anomaly score, according to the findings, is more stable and traceable, with fewer false positives and negatives. The proposed system\u27s efficiency is compared to three existing approaches: Multiscaling Convolutional Recurrent Encoder-Decoder, Autoregressive Moving Average, and Long Short Term Medium-Encoder-Decoder. The results show that the proposed technique has the highest precision of 1 for a noise level of 0.2. Thus, it demonstrates greater precision for noise factors of 0.25, 0.3, 0.35, and 0.4, and its effectiveness

    Perception and Hierarchical Dynamics

    Get PDF
    In this paper, we suggest that perception could be modeled by assuming that sensory input is generated by a hierarchy of attractors in a dynamic system. We describe a mathematical model which exploits the temporal structure of rapid sensory dynamics to track the slower trajectories of their underlying causes. This model establishes a proof of concept that slowly changing neuronal states can encode the trajectories of faster sensory signals. We link this hierarchical account to recent developments in the perception of human action; in particular artificial speech recognition. We argue that these hierarchical models of dynamical systems are a plausible starting point to develop robust recognition schemes, because they capture critical temporal dependencies induced by deep hierarchical structure. We conclude by suggesting that a fruitful computational neuroscience approach may emerge from modeling perception as non-autonomous recognition dynamics enslaved by autonomous hierarchical dynamics in the sensorium
    corecore