15,043 research outputs found

    What Is One Grain of Sand in the Desert? Analyzing Individual Neurons in Deep NLP Models

    Full text link
    Despite the remarkable evolution of deep neural networks in natural language processing (NLP), their interpretability remains a challenge. Previous work largely focused on what these models learn at the representation level. We break this analysis down further and study individual dimensions (neurons) in the vector representation learned by end-to-end neural models in NLP tasks. We propose two methods: Linguistic Correlation Analysis, based on a supervised method to extract the most relevant neurons with respect to an extrinsic task, and Cross-model Correlation Analysis, an unsupervised method to extract salient neurons w.r.t. the model itself. We evaluate the effectiveness of our techniques by ablating the identified neurons and reevaluating the network's performance for two tasks: neural machine translation (NMT) and neural language modeling (NLM). We further present a comprehensive analysis of neurons with the aim to address the following questions: i) how localized or distributed are different linguistic properties in the models? ii) are certain neurons exclusive to some properties and not others? iii) is the information more or less distributed in NMT vs. NLM? and iv) how important are the neurons identified through the linguistic correlation method to the overall task? Our code is publicly available as part of the NeuroX toolkit (Dalvi et al. 2019).Comment: AAA 2019, pages 10, AAAI Conference on Artificial Intelligence (AAAI 2019

    Exposing the Functionalities of Neurons for Gated Recurrent Unit Based Sequence-to-Sequence Model

    Full text link
    The goal of this paper is to report certain scientific discoveries about a Seq2Seq model. It is known that analyzing the behavior of RNN-based models at the neuron level is considered a more challenging task than analyzing a DNN or CNN models due to their recursive mechanism in nature. This paper aims to provide neuron-level analysis to explain why a vanilla GRU-based Seq2Seq model without attention can achieve token-positioning. We found four different types of neurons: storing, counting, triggering, and outputting and further uncover the mechanism for these neurons to work together in order to produce the right token in the right position.Comment: 9 pages (excluding reference), 10 figure
    • …
    corecore