28 research outputs found

    Base Size Sets and Determining Sets

    Full text link
    Bridging the work of Cameron, Harary, and others, we examine the base size set B(G) and determining set D(G) of several families of groups. The base size set is the set of base sizes of all faithful actions of the group G on finite sets. The determining set is the subset of B(G) obtained by restricting the actions of G to automorphism groups of finite graphs. We show that for finite abelian groups, B(G)=D(G)={1,2,...,k} where k is the number of elementary divisors of G. We then characterize B(G) and D(G) for dihedral groups of the form D_{p^k} and D_{2p^k}. Finally, we prove B(G) is not equal to D(G) for dihedral groups of the form D_{pq} where p and q are distinct odd primes.Comment: 10 pages, 1 figur

    Symmetry breaking in tournaments

    Get PDF
    We provide upper bounds for the determining number and the metric dimension of tournaments. A set of vertices S in V(T) is a determining set for a tournament T if every nontrivial automorphism of T moves at least one vertex of S, while S is a resolving set for T if every two distinct vertices in T have different distances to some vertex in S. We show that the minimum size of a determining set for an order n tournament (its determining number) is bounded by n/3, while the minimum size of a resolving set for an order n strong tournament (its metric dimension) is bounded by n/2. Both bounds are optimal.Peer ReviewedPostprint (published version

    Fixing numbers for matroids

    Full text link
    Motivated by work in graph theory, we define the fixing number for a matroid. We give upper and lower bounds for fixing numbers for a general matroid in terms of the size and maximum orbit size (under the action of the matroid automorphism group). We prove the fixing numbers for the cycle matroid and bicircular matroid associated with 3-connected graphs are identical. Many of these results have interpretations through permutation groups, and we make this connection explicit.Comment: This is a major revision of a previous versio

    Fixing number of co-noraml product of graphs

    Full text link
    An automorphism of a graph GG is a bijective mapping from the vertex set of GG to itself which preserves the adjacency and the non-adjacency relations of the vertices of GG. A fixing set FF of a graph GG is a set of those vertices of GG which when assigned distinct labels removes all the automorphisms of GG, except the trivial one. The fixing number of a graph GG, denoted by fix(G)fix(G), is the smallest cardinality of a fixing set of GG. The co-normal product G1G2G_1\ast G_2 of two graphs G1G_1 and G2G_2, is a graph having the vertex set V(G1)×V(G2)V(G_1)\times V(G_2) and two distinct vertices (g1,g2),(g1ˊ,g2ˊ)(g_1, g_2), (\acute{g_1}, \acute{g_2}) are adjacent if g1g_1 is adjacent to g1ˊ\acute{g_1} in G1G_1 or g2g_2 is adjacent to g2ˊ\acute{g_2} in G2G_2. We define a general co-normal product of k2k\geq 2 graphs which is a natural generalization of the co-normal product of two graphs. In this paper, we discuss automorphisms of the co-normal product of graphs using the automorphisms of its factors and prove results on the cardinality of the automorphism group of the co-normal product of graphs. We prove that max{fix(G1),fix(G2)}fix(G1G2)max\{fix(G_1), fix(G_2)\}\leq fix(G_1\ast G_2), for any two graphs G1G_1 and G2G_2. We also compute the fixing number of the co-normal product of some families of graphs.Comment: 13 page

    A formula for the base size of the symmetric group in its action on subsets

    Full text link
    Given two positive integers nn and kk, we obtain a formula for the base size of the symmetric group of degree nn in its action on kk-subsets. Then, we use this formula to compute explicitly the base size for each nn and for each k14k\le 14.Comment: 10 page
    corecore