23,142 research outputs found

    User Perceptions of Smart Home IoT Privacy

    Full text link
    Smart home Internet of Things (IoT) devices are rapidly increasing in popularity, with more households including Internet-connected devices that continuously monitor user activities. In this study, we conduct eleven semi-structured interviews with smart home owners, investigating their reasons for purchasing IoT devices, perceptions of smart home privacy risks, and actions taken to protect their privacy from those external to the home who create, manage, track, or regulate IoT devices and/or their data. We note several recurring themes. First, users' desires for convenience and connectedness dictate their privacy-related behaviors for dealing with external entities, such as device manufacturers, Internet Service Providers, governments, and advertisers. Second, user opinions about external entities collecting smart home data depend on perceived benefit from these entities. Third, users trust IoT device manufacturers to protect their privacy but do not verify that these protections are in place. Fourth, users are unaware of privacy risks from inference algorithms operating on data from non-audio/visual devices. These findings motivate several recommendations for device designers, researchers, and industry standards to better match device privacy features to the expectations and preferences of smart home owners.Comment: 20 pages, 1 tabl

    Use Cases for Abnormal Behaviour Detection in Smart Homes

    Get PDF
    While people have many ideas about how a smart home should react to particular behaviours from their inhabitant, there seems to have been relatively little attempt to organise this systematically. In this paper, we attempt to rectify this in consideration of context awareness and novelty detection for a smart home that monitors its inhabitant for illness and unexpected behaviour. We do this through the concept of the Use Case, which is used in software engineering to specify the behaviour of a system. We describe a set of scenarios and the possible outputs that the smart home could give and introduce the SHMUC Repository of Smart Home Use Cases. Based on this, we can consider how probabilistic and logic-based reasoning systems would produce different capabilities

    Exploring The Responsibilities Of Single-Inhabitant Smart Homes With Use Cases

    Get PDF
    DOI: 10.3233/AIS-2010-0076This paper makes a number of contributions to the field of requirements analysis for Smart Homes. It introduces Use Cases as a tool for exploring the responsibilities of Smart Homes and it proposes a modification of the conventional Use Case structure to suit the particular requirements of Smart Homes. It presents a taxonomy of Smart-Home-related Use Cases with seven categories. It draws on those Use Cases as raw material for developing questions and conclusions about the design of Smart Homes for single elderly inhabitants, and it introduces the SHMUC repository, a web-based repository of Use Cases related to Smart Homes that anyone can exploit and to which anyone may contribute

    Human desire inference process and analysis

    Get PDF
    Ubiquitous computing becomes a more fascinating research area since it may offer us an unobtrusive way to help users in their environments that integrate surrounding objects and activities. To date, there have been numerous studies focusing on how user\u27s activity can be identified and predicted, without considering motivation driving an action. However, understanding the underlying motivation is a key to activity analysis. On the other hand, user\u27s desires often generate motivations to engage activities in order to fulfill such desires. Thus, we must study user\u27s desires in order to provide proper services to make the life of users more comfortable. In this study, we present how to design and implement a computational model for inference of user\u27s desire. First, we devised a hierarchical desire inference process based on the Bayesian Belief Networks (BBNs), that considers the affective states, behavior contexts and environmental contexts of a user at given points in time to infer the user\u27s desire. The inferred desire of the highest probability from the BBNs is then used in the subsequent decision making. Second, we extended a probabilistic framework based on the Dynamic Bayesian Belief Networks (DBBNs) which model the observation sequences and information theory. A generic hierarchical probabilistic framework for desire inference is introduced to model the context information and the visual sensory observations. Also, this framework dynamically evolves to account for temporal change in context information along with the change in user\u27s desire. Third, we described what possible factors are relevant to determine user\u27s desire. To achieve this, a full-scale experiment has been conducted. Raw data from sensors were interpreted as context information. We observed the user\u27s activities and get user\u27s emotions as a part of input parameters. Throughout the experiment, a complete analysis was conducted whereas 30 factors were considered and most relevant factors were selectively chosen using correlation coefficient and delta value. Our results show that 11 factors (3 emotions, 7 behaviors and 1 location factor) are relevant to inferring user\u27s desire. Finally, we have established an evaluation environment within the Smart Home Lab to validate our approach. In order to train and verify the desire inference model, multiple stimuli are provided to induce user\u27s desires and pilot data are collected during the experiments. For evaluation, we used the recall and precision methodology, which are basic measures. As a result, average precision was calculated to be 85% for human desire inference and 81% for Think-Aloud

    A situation-driven framework for relearning of activities of daily living in smart home environments

    Get PDF
    Activities of Daily Living (ADLs) are sine qua non for self-care and improved quality of life. Self-efficacy is major challenge for seniors with early-stage dementia (ED) when performing daily living activities. ED causes deterioration of cognitive functions and thus impacts aging adults’ functioning initiative and performance of instrumental activities of daily living (IADLs). Generally, IADLs requires certain skills in both planning and execution and may involve sequence of steps for aging adults to accomplish their goals. These intricate procedures in IADLs potentially predispose older adults to safety-critical situations with life-threatening consequences. A safety-critical situation is a state or event that potentially constitutes a risk with life-threatening injuries or accidents. To address this problem, a situation-driven framework for relearning of daily living activities in smart home environment is proposed. The framework is composed of three (3) major units namely: a) goal inference unit – leverages a deep learning model to infer human goal in a smart home, b) situation-context generator – responsible for risk mitigation in IADLs, and c) a recommendation unit – to support decision making of aging adults in safety-critical situations. The proposed framework was validated against IADLs dataset collected from a smart home research prototype and the results obtained are promising

    Situation-Transition Structure and Its Applications in Software System Development

    Get PDF
    Observing, analyzing and understanding human factors is becoming a major concern in software development process in order to gain higher customer satisfaction. In this paper, we present a semi-automated methodology to generate the situation-transition structure which can be used to analyze the human behavior patterns in a specific domain. The term situation is defined as a 3-tuple \u3c d; A;E \u3e where d denotes human desire (mental state), A denotes the human actions vector, and E denotes the surrounding environment context vector. The situation-transition structure is a directed weighted graph where each node represents a unique situation or set of concurrent situations and an edge represents the transition from one situation to another. Data mining and machine learning techniques are used to generate situation-transition structure from raw observational data. We illustrate the proposed methodology through some case studies with open access datasets. The applications and advantages of situation-transition structure in software development are then asserted

    Eavesdropping Whilst You're Shopping: Balancing Personalisation and Privacy in Connected Retail Spaces

    Get PDF
    Physical retailers, who once led the way in tracking with loyalty cards and `reverse appends', now lag behind online competitors. Yet we might be seeing these tables turn, as many increasingly deploy technologies ranging from simple sensors to advanced emotion detection systems, even enabling them to tailor prices and shopping experiences on a per-customer basis. Here, we examine these in-store tracking technologies in the retail context, and evaluate them from both technical and regulatory standpoints. We first introduce the relevant technologies in context, before considering privacy impacts, the current remedies individuals might seek through technology and the law, and those remedies' limitations. To illustrate challenging tensions in this space we consider the feasibility of technical and legal approaches to both a) the recent `Go' store concept from Amazon which requires fine-grained, multi-modal tracking to function as a shop, and b) current challenges in opting in or out of increasingly pervasive passive Wi-Fi tracking. The `Go' store presents significant challenges with its legality in Europe significantly unclear and unilateral, technical measures to avoid biometric tracking likely ineffective. In the case of MAC addresses, we see a difficult-to-reconcile clash between privacy-as-confidentiality and privacy-as-control, and suggest a technical framework which might help balance the two. Significant challenges exist when seeking to balance personalisation with privacy, and researchers must work together, including across the boundaries of preferred privacy definitions, to come up with solutions that draw on both technology and the legal frameworks to provide effective and proportionate protection. Retailers, simultaneously, must ensure that their tracking is not just legal, but worthy of the trust of concerned data subjects.Comment: 10 pages, 1 figure, Proceedings of the PETRAS/IoTUK/IET Living in the Internet of Things Conference, London, United Kingdom, 28-29 March 201

    Situation-oriented requirements engineering

    Get PDF
    The establishment of smart environments, Internet of Things (IoT) and socio-technical systems has introduced many challenges to the software development process. One such main challenge is software requirements gathering which needs to address issues in a broader spectrum than traditional standalone software development. Consideration of bigger picture that includes software, its domain, the components of the domains and especially the interactions between the software and the surrounding domain components, including both human and other systems entities, is essential to gathering reliable requirements. However, most of the traditional Requirements Engineering approaches lack such comprehensive overlook of the overall view. The main objective of this work is to introduce a human-centered approach to Requirements Engineering in order to push the boundaries of traditional concepts to be more suitable for use in the development of modern socio-technical systems in smart environments. A major challenge of introducing a human-centered approach is to effectively identify the related human factors; especially, since each individual has unique desires, goals, behaviors. Our proposed solution is to use the observational data sets generated by smart environments as a resource to extract individual\u27s unique personalities and behaviors related to the software design. The concept of situations defined in our earlier study is used to represent the human and domain related aspects including human desires, goals, beliefs, interactions with the system and the constrained environment. In the first stage of this work, a computational model called situation-transition structure is developed to understand the discrete factors and behavior patterns of individuals through the observational data. During the second stage, the information mined from the situation transition structure is applied to propose new human-centered approaches to support main Requirements Engineering concepts: requirements elicitation, risk management, and prioritization. The pertinence of the proposed work is illustrated through some case studies. The conclusion asserts some of the future research direction

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-BotÂź3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe
    • 

    corecore