30,140 research outputs found

    Identification of causal genes for complex traits.

    Get PDF
    MotivationAlthough genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider 'causal variants' as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations.ResultsIn this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2.Availability and implementationSoftware is freely available for download at genetics.cs.ucla.edu/caviar

    The Decay of Disease Association with Declining Linkage Disequilibrium: A Fine Mapping Theorem

    Get PDF
    Several important and fundamental aspects of disease genetics models have yet to be described. One such property is the relationship of disease association statistics at a marker site closely linked to a disease causing site. A complete description of this two-locus system is of particular importance to experimental efforts to fine map association signals for complex diseases. Here, we present a simple relationship between disease association statistics and the decline of linkage disequilibrium from a causal site. Specifically, the ratio of Chi-square disease association statistics at a marker site and causal site is equivalent to the standard measure of pairwise linkage disequilibrium, r2. A complete derivation of this relationship from a general disease model is shown. Quite interestingly, this relationship holds across all modes of inheritance. Extensive Monte Carlo simulations using a disease genetics model applied to chromosomes subjected to a standard model of recombination are employed to better understand the variation around this fine mapping theorem due to sampling effects. We also use this relationship to provide a framework for estimating properties of a non-interrogated causal site using data at closely linked markers. Lastly, we apply this way of examining association data from high-density genotyping in a large, publicly-available data set investigating extreme BMI. We anticipate that understanding the patterns of disease association decay with declining linkage disequilibrium from a causal site will enable more powerful fine mapping methods and provide new avenues for identifying causal sites/genes from fine-mapping studies

    Methodological Issues in Multistage Genome-Wide Association Studies

    Full text link
    Because of the high cost of commercial genotyping chip technologies, many investigations have used a two-stage design for genome-wide association studies, using part of the sample for an initial discovery of ``promising'' SNPs at a less stringent significance level and the remainder in a joint analysis of just these SNPs using custom genotyping. Typical cost savings of about 50% are possible with this design to obtain comparable levels of overall type I error and power by using about half the sample for stage I and carrying about 0.1% of SNPs forward to the second stage, the optimal design depending primarily upon the ratio of costs per genotype for stages I and II. However, with the rapidly declining costs of the commercial panels, the generally low observed ORs of current studies, and many studies aiming to test multiple hypotheses and multiple endpoints, many investigators are abandoning the two-stage design in favor of simply genotyping all available subjects using a standard high-density panel. Concern is sometimes raised about the absence of a ``replication'' panel in this approach, as required by some high-profile journals, but it must be appreciated that the two-stage design is not a discovery/replication design but simply a more efficient design for discovery using a joint analysis of the data from both stages. Once a subset of highly-significant associations has been discovered, a truly independent ``exact replication'' study is needed in a similar population of the same promising SNPs using similar methods.Comment: Published in at http://dx.doi.org/10.1214/09-STS288 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Landscape of stimulation-responsive chromatin across diverse human immune cells.

    Get PDF
    A hallmark of the immune system is the interplay among specialized cell types transitioning between resting and stimulated states. The gene regulatory landscape of this dynamic system has not been fully characterized in human cells. Here we collected assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing data under resting and stimulated conditions for up to 32 immune cell populations. Stimulation caused widespread chromatin remodeling, including response elements shared between stimulated B and T cells. Furthermore, several autoimmune traits showed significant heritability in stimulation-responsive elements from distinct cell types, highlighting the importance of these cell states in autoimmunity. Allele-specific read mapping identified variants that alter chromatin accessibility in particular conditions, allowing us to observe evidence of function for a candidate causal variant that is undetected by existing large-scale studies in resting cells. Our results provide a resource of chromatin dynamics and highlight the need to characterize the effects of genetic variation in stimulated cells

    A Bayesian Method for Detecting and Characterizing Allelic Heterogeneity and Boosting Signals in Genome-Wide Association Studies

    Full text link
    The standard paradigm for the analysis of genome-wide association studies involves carrying out association tests at both typed and imputed SNPs. These methods will not be optimal for detecting the signal of association at SNPs that are not currently known or in regions where allelic heterogeneity occurs. We propose a novel association test, complementary to the SNP-based approaches, that attempts to extract further signals of association by explicitly modeling and estimating both unknown SNPs and allelic heterogeneity at a locus. At each site we estimate the genealogy of the case-control sample by taking advantage of the HapMap haplotypes across the genome. Allelic heterogeneity is modeled by allowing more than one mutation on the branches of the genealogy. Our use of Bayesian methods allows us to assess directly the evidence for a causative SNP not well correlated with known SNPs and for allelic heterogeneity at each locus. Using simulated data and real data from the WTCCC project, we show that our method (i) produces a significant boost in signal and accurately identifies the form of the allelic heterogeneity in regions where it is known to exist, (ii) can suggest new signals that are not found by testing typed or imputed SNPs and (iii) can provide more accurate estimates of effect sizes in regions of association.Comment: Published in at http://dx.doi.org/10.1214/09-STS311 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore