4 research outputs found

    Sketch-Based Streaming Anomaly Detection in Dynamic Graphs

    Full text link
    Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges and subgraphs in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? For example, in intrusion detection, existing work seeks to detect either anomalous edges or anomalous subgraphs, but not both. In this paper, we first extend the count-min sketch data structure to a higher-order sketch. This higher-order sketch has the useful property of preserving the dense subgraph structure (dense subgraphs in the input turn into dense submatrices in the data structure). We then propose four online algorithms that utilize this enhanced data structure, which (a) detect both edge and graph anomalies; (b) process each edge and graph in constant memory and constant update time per newly arriving edge, and; (c) outperform state-of-the-art baselines on four real-world datasets. Our method is the first streaming approach that incorporates dense subgraph search to detect graph anomalies in constant memory and time

    Mining (maximal) span-cores from temporal networks

    Get PDF
    When analyzing temporal networks, a fundamental task is the identification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). We tackle this task by introducing a notion of temporal core decomposition where each core is associated with its span: we call such cores span-cores. As the total number of time intervals is quadratic in the size of the temporal domain TT under analysis, the total number of span-cores is quadratic in T|T| as well. Our first contribution is an algorithm that, by exploiting containment properties among span-cores, computes all the span-cores efficiently. Then, we focus on the problem of finding only the maximal span-cores, i.e., span-cores that are not dominated by any other span-core by both the coreness property and the span. We devise a very efficient algorithm that exploits theoretical findings on the maximality condition to directly compute the maximal ones without computing all span-cores. Experimentation on several real-world temporal networks confirms the efficiency and scalability of our methods. Applications on temporal networks, gathered by a proximity-sensing infrastructure recording face-to-face interactions in schools, highlight the relevance of the notion of (maximal) span-core in analyzing social dynamics and detecting/correcting anomalies in the data

    Identifying Buzzing Stories via Anomalous Temporal Subgraph Discovery

    No full text
    Story identification from online user-generated content has recently raised increasing attention. Existing approaches fall into two categories. Approaches in the first category extract stories as cohesive substructures in a graph representing the strength of association between terms. The latter category includes approaches that analyze the temporal evolution of individual terms and identify stories by grouping terms with similar anomalous temporal behavior. Both categories have limitations. In this work we advance the literature on story identification by devising a novel method that profitably combines the peculiarities of the two main existing approaches, thus also addressing their weaknesses. Experiments on a dataset extracted from a real-world web-search log demonstrate the superiority of the proposed method over the state of the art. © 2016 IEEE

    Span-core Decomposition for Temporal Networks: Algorithms and Applications

    Full text link
    When analyzing temporal networks, a fundamental task is the identification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). In this paper we tackle this task by introducing a notion of temporal core decomposition where each core is associated with two quantities, its coreness, which quantifies how densely it is connected, and its span, which is a temporal interval: we call such cores \emph{span-cores}. For a temporal network defined on a discrete temporal domain TT, the total number of time intervals included in TT is quadratic in T|T|, so that the total number of span-cores is potentially quadratic in T|T| as well. Our first main contribution is an algorithm that, by exploiting containment properties among span-cores, computes all the span-cores efficiently. Then, we focus on the problem of finding only the \emph{maximal span-cores}, i.e., span-cores that are not dominated by any other span-core by both their coreness property and their span. We devise a very efficient algorithm that exploits theoretical findings on the maximality condition to directly extract the maximal ones without computing all span-cores. Finally, as a third contribution, we introduce the problem of \emph{temporal community search}, where a set of query vertices is given as input, and the goal is to find a set of densely-connected subgraphs containing the query vertices and covering the whole underlying temporal domain TT. We derive a connection between this problem and the problem of finding (maximal) span-cores. Based on this connection, we show how temporal community search can be solved in polynomial-time via dynamic programming, and how the maximal span-cores can be profitably exploited to significantly speed-up the basic algorithm.Comment: ACM Transactions on Knowledge Discovery from Data (TKDD), 2020. arXiv admin note: substantial text overlap with arXiv:1808.0937
    corecore