4,544 research outputs found

    Interpretation of Neural Networks is Fragile

    Full text link
    In order for machine learning to be deployed and trusted in many applications, it is crucial to be able to reliably explain why the machine learning algorithm makes certain predictions. For example, if an algorithm classifies a given pathology image to be a malignant tumor, then the doctor may need to know which parts of the image led the algorithm to this classification. How to interpret black-box predictors is thus an important and active area of research. A fundamental question is: how much can we trust the interpretation itself? In this paper, we show that interpretation of deep learning predictions is extremely fragile in the following sense: two perceptively indistinguishable inputs with the same predicted label can be assigned very different interpretations. We systematically characterize the fragility of several widely-used feature-importance interpretation methods (saliency maps, relevance propagation, and DeepLIFT) on ImageNet and CIFAR-10. Our experiments show that even small random perturbation can change the feature importance and new systematic perturbations can lead to dramatically different interpretations without changing the label. We extend these results to show that interpretations based on exemplars (e.g. influence functions) are similarly fragile. Our analysis of the geometry of the Hessian matrix gives insight on why fragility could be a fundamental challenge to the current interpretation approaches.Comment: Published as a conference paper at AAAI 201

    Are You Tampering With My Data?

    Full text link
    We propose a novel approach towards adversarial attacks on neural networks (NN), focusing on tampering the data used for training instead of generating attacks on trained models. Our network-agnostic method creates a backdoor during training which can be exploited at test time to force a neural network to exhibit abnormal behaviour. We demonstrate on two widely used datasets (CIFAR-10 and SVHN) that a universal modification of just one pixel per image for all the images of a class in the training set is enough to corrupt the training procedure of several state-of-the-art deep neural networks causing the networks to misclassify any images to which the modification is applied. Our aim is to bring to the attention of the machine learning community, the possibility that even learning-based methods that are personally trained on public datasets can be subject to attacks by a skillful adversary.Comment: 18 page
    corecore