10,109 research outputs found

    Patent Analytics Based on Feature Vector Space Model: A Case of IoT

    Full text link
    The number of approved patents worldwide increases rapidly each year, which requires new patent analytics to efficiently mine the valuable information attached to these patents. Vector space model (VSM) represents documents as high-dimensional vectors, where each dimension corresponds to a unique term. While originally proposed for information retrieval systems, VSM has also seen wide applications in patent analytics, and used as a fundamental tool to map patent documents to structured data. However, VSM method suffers from several limitations when applied to patent analysis tasks, such as loss of sentence-level semantics and curse-of-dimensionality problems. In order to address the above limitations, we propose a patent analytics based on feature vector space model (FVSM), where the FVSM is constructed by mapping patent documents to feature vectors extracted by convolutional neural networks (CNN). The applications of FVSM for three typical patent analysis tasks, i.e., patents similarity comparison, patent clustering, and patent map generation are discussed. A case study using patents related to Internet of Things (IoT) technology is illustrated to demonstrate the performance and effectiveness of FVSM. The proposed FVSM can be adopted by other patent analysis studies to replace VSM, based on which various big data learning tasks can be performed

    Innovation as a Nonlinear Process, the Scientometric Perspective, and the Specification of an "Innovation Opportunities Explorer"

    Get PDF
    The process of innovation follows non-linear patterns across the domains of science, technology, and the economy. Novel bibliometric mapping techniques can be used to investigate and represent distinctive, but complementary perspectives on the innovation process (e.g., "demand" and "supply") as well as the interactions among these perspectives. The perspectives can be represented as "continents" of data related to varying extents over time. For example, the different branches of Medical Subject Headings (MeSH) in the Medline database provide sources of such perspectives (e.g., "Diseases" versus "Drugs and Chemicals"). The multiple-perspective approach enables us to reconstruct facets of the dynamics of innovation, in terms of selection mechanisms shaping localizable trajectories and/or resulting in more globalized regimes. By expanding the data with patents and scholarly publications, we demonstrate the use of this multi-perspective approach in the case of RNA Interference (RNAi). The possibility to develop an "Innovation Opportunities Explorer" is specified.Comment: Technology Analysis and Strategic Management (forthcoming in 2013

    Generating Information Relation Matrix Using Semantic Patent Mining for Technology Planning: A Case of Nano-Sensor

    Get PDF
    For the purposes of technology planning and research and development strategy development, we present a semi-automated method that extracts text information from patent data, uses natural language processing to extract the key technical information of the patent, and then visualizes this information in a matrix form. We tried to support qualitative analysis of patent contents by extracting functions, components, and contexts, which are the most important information about inventions. We validated the method by applying it to patent data related to nanosensors. The matrix can emphasize technical information that have not been exploited in patents, and thereby identify development opportunities.111Ysciescopu

    Model identification and model analysis in robot training

    Get PDF
    Robot training is a fast and efficient method of obtaining robot control code. Many current machine learning paradigms used for this purpose, however, result in opaque models that are difficult, if not impossible to analyse, which is an impediment in safety-critical applications or application scenarios where humans and robots occupy the same workspace. In experiments with a Magellan Pro mobile robot we demonstrate that it is possible to obtain transparent models of sensor-motor couplings that are amenable to subsequent analysis, and how such analysis can be used to refine and tune the models post hoc

    Functional technology foresight. A novel methodology to identify emerging technologies

    Get PDF
    The speed and complexity of the technology evolution faced by modern societies need new approaches to the analysis and understanding of the world. Indeed, an exclusive focus on technological goals can miss to recognize all the stakeholders of a technology and address real user needs; moreover, on the one hand low signals are becoming more and more important in fast evolving markets, on the other hand the excess of hype, fashions, or vested interests sometimes deeply alter indicators. However, the so called Big Data promise to be a huge low cost set of valuable information, available and affordable to all (SMEs included). But, analyzing them is not trivial especially if we deal with academic papers and patents. To tackle these issues, the present paper proposes to apply a powerful methodological tool called Functional Analysis to the Technology Foresight process. Actually the rigorous study of the functions, that an artefact should perform to satisfy the user needs, provides a universal and thus unifying point of view, which is able to correlate the user perspective on the product with its technical features. Functional reasoning has been applied to (i) detect possible patterns of development, spotting missing elements and highlighting strengths as well as potential sources of failure; (ii) to enhance traditional bibliometric tools such as the analysis of S-curves and (iii), integrated with a natural language processing analysis toolchain, tailored for patent documents, to identify emerging technologies. The paper describes the functional approach to technology foresight activity, presents how to integrate it with text mining algorithms and experts’ domain knowledge, and finally discusses its benefits in the context of Technology Foresight also from an economic point of view, showing that oresight is affordable also for Small and Medium Enterprises

    Automatic Patent Clustering using SOM and Bibliographic Coupling

    Get PDF
    Patents are usually organized in classes generated by the offices responsible for patents protection, to create a useful format to the information retrieval process. The complexity of patent taxonomies is a challenge for the automation of patent classification. Beside this, the high numbers of subgroups makes the classification in deeper levels more difficult. This work proposes a method to cluster patents using Self Organizing Maps (SOM) networks and bibliographic coupling. To validate the proposed method, an empirical experiment used a patent database from a specific classification system. The obtained results show that patents clusters were successfully identified by SOM through their cited references, and that SOM results were similar to k-Means algorithm results to perform this task. This study can contribute to the development of the knowledge organization systems by evaluating the use of citation analysis in the automatic clustering of patents in a constrained knowledge domain, at the subgroup level of current patent classification systems
    • 

    corecore