3 research outputs found

    Electrostatic Friction Displays to Enhance Touchscreen Experience

    Get PDF
    Touchscreens are versatile devices that can display visual content and receive touch input, but they lack the ability to provide programmable tactile feedback. This limitation has been addressed by a few approaches generally called surface haptics technology. This technology modulates the friction between a user’s fingertip and a touchscreen surface to create different tactile sensations when the finger explores the touchscreen. This functionality enables the user to see and feel digital content simultaneously, leading to improved usability and user experiences. One major approach in surface haptics relies on the electrostatic force induced between the finger and an insulating surface on the touchscreen by supplying high AC voltage. The use of AC also induces a vibrational sensation called electrovibration to the user. Electrostatic friction displays require only electrical components and provide uniform friction over the screen. This tactile feedback technology not only allows easy and lightweight integration into touchscreen devices but also provides dynamic, rich, and satisfactory user interfaces. In this chapter, we review the fundamental operation of the electrovibration technology as well as applications have been built upon

    Identification of Primitive Geometrical Shapes Rendered Using Electrostatic Friction Display

    No full text
    1

    Modern Applications of Electrostatics and Dielectrics

    Get PDF
    Electrostatics and dielectric materials have important applications in modern society. As such, they require improved characteristics. More and more equipment needs to operate at high frequency, high voltage, high temperature, and other harsh conditions. This book presents an overview of modern applications of electrostatics and dielectrics as well as research progress in the field
    corecore