11,441 research outputs found

    Identifying Overlapping and Hierarchical Thematic Structures in Networks of Scholarly Papers: A Comparison of Three Approaches

    Get PDF
    We implemented three recently proposed approaches to the identification of overlapping and hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of titles and keywords. We defined sets of papers dealing with three topics located on different levels of aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with the three pre-defined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper networks in research fields.Comment: 18 pages, 9 figure

    Searching for network modules

    Full text link
    When analyzing complex networks a key target is to uncover their modular structure, which means searching for a family of modules, namely node subsets spanning each a subnetwork more densely connected than the average. This work proposes a novel type of objective function for graph clustering, in the form of a multilinear polynomial whose coefficients are determined by network topology. It may be thought of as a potential function, to be maximized, taking its values on fuzzy clusterings or families of fuzzy subsets of nodes over which every node distributes a unit membership. When suitably parametrized, this potential is shown to attain its maximum when every node concentrates its all unit membership on some module. The output thus is a partition, while the original discrete optimization problem is turned into a continuous version allowing to conceive alternative search strategies. The instance of the problem being a pseudo-Boolean function assigning real-valued cluster scores to node subsets, modularity maximization is employed to exemplify a so-called quadratic form, in that the scores of singletons and pairs also fully determine the scores of larger clusters, while the resulting multilinear polynomial potential function has degree 2. After considering further quadratic instances, different from modularity and obtained by interpreting network topology in alternative manners, a greedy local-search strategy for the continuous framework is analytically compared with an existing greedy agglomerative procedure for the discrete case. Overlapping is finally discussed in terms of multiple runs, i.e. several local searches with different initializations.Comment: 10 page

    Link communities reveal multiscale complexity in networks

    Full text link
    Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein-protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.Comment: Main text and supplementary informatio

    Element-centric clustering comparison unifies overlaps and hierarchy

    Full text link
    Clustering is one of the most universal approaches for understanding complex data. A pivotal aspect of clustering analysis is quantitatively comparing clusterings; clustering comparison is the basis for many tasks such as clustering evaluation, consensus clustering, and tracking the temporal evolution of clusters. In particular, the extrinsic evaluation of clustering methods requires comparing the uncovered clusterings to planted clusterings or known metadata. Yet, as we demonstrate, existing clustering comparison measures have critical biases which undermine their usefulness, and no measure accommodates both overlapping and hierarchical clusterings. Here we unify the comparison of disjoint, overlapping, and hierarchically structured clusterings by proposing a new element-centric framework: elements are compared based on the relationships induced by the cluster structure, as opposed to the traditional cluster-centric philosophy. We demonstrate that, in contrast to standard clustering similarity measures, our framework does not suffer from critical biases and naturally provides unique insights into how the clusterings differ. We illustrate the strengths of our framework by revealing new insights into the organization of clusters in two applications: the improved classification of schizophrenia based on the overlapping and hierarchical community structure of fMRI brain networks, and the disentanglement of various social homophily factors in Facebook social networks. The universality of clustering suggests far-reaching impact of our framework throughout all areas of science

    Link Clustering with Extended Link Similarity and EQ Evaluation Division.

    Get PDF
    Link Clustering (LC) is a relatively new method for detecting overlapping communities in networks. The basic principle of LC is to derive a transform matrix whose elements are composed of the link similarity of neighbor links based on the Jaccard distance calculation; then it applies hierarchical clustering to the transform matrix and uses a measure of partition density on the resulting dendrogram to determine the cut level for best community detection. However, the original link clustering method does not consider the link similarity of non-neighbor links, and the partition density tends to divide the communities into many small communities. In this paper, an Extended Link Clustering method (ELC) for overlapping community detection is proposed. The improved method employs a new link similarity, Extended Link Similarity (ELS), to produce a denser transform matrix, and uses the maximum value of EQ (an extended measure of quality of modularity) as a means to optimally cut the dendrogram for better partitioning of the original network space. Since ELS uses more link information, the resulting transform matrix provides a superior basis for clustering and analysis. Further, using the EQ value to find the best level for the hierarchical clustering dendrogram division, we obtain communities that are more sensible and reasonable than the ones obtained by the partition density evaluation. Experimentation on five real-world networks and artificially-generated networks shows that the ELC method achieves higher EQ and In-group Proportion (IGP) values. Additionally, communities are more realistic than those generated by either of the original LC method or the classical CPM method
    • …
    corecore