8,084 research outputs found

    Crystal image analysis using 2D2D synchrosqueezed transforms

    Full text link
    We propose efficient algorithms based on a band-limited version of 2D synchrosqueezed transforms to extract mesoscopic and microscopic information from atomic crystal images. The methods analyze atomic crystal images as an assemblage of non-overlapping segments of 2D general intrinsic mode type functions, which are superpositions of non-linear wave-like components. In particular, crystal defects are interpreted as the irregularity of local energy; crystal rotations are described as the angle deviation of local wave vectors from their references; the gradient of a crystal elastic deformation can be obtained by a linear system generated by local wave vectors. Several numerical examples of synthetic and real crystal images are provided to illustrate the efficiency, robustness, and reliability of our methods.Comment: 27 pages, 17 figure

    A Submillimeter Study of the Star-Forming Region NGC7129

    Get PDF
    New molecular (13CO J=3-2) and dust continuum (450 and 850 micron) SCUBA maps of the NGC7129 star forming region are presented, complemented by C18O J=3-2 spectra at several positions within the mapped region. The maps include the Herbig Ae/Be star LkHalpha 234, the far-infrared source NGC 7129 FIRS2 and several other pre-stellar sources embedded within the molecular ridge. The SCUBA maps help us understand the nature of the pre-main sequence stars in this actively star forming region. A deeply embedded submillimeter source, SMM2, not clearly seen in any earlier data set, is shown to be a pre-stellar core or possibly a protostar. The highest continuum peak emission is identified with the deeply embedded source IRS6, a few arcseconds away from LkHalpha 234, and also responsible for both the optical jet and the molecular outflow. The gas and dust masses are found to be consistent, suggesting little or no CO depletion onto grains. The dust emissivity index is lower towards the dense compact sources, beta ~1 - 1.6, and higher, beta ~ 2.0, in the surrounding cloud, implying small size grains in the PDR ridge, whose mantles have been evaporated by the intense UV radiation.Comment: Accepted by Ap

    A model for the condensation of a dusty plasma

    Get PDF
    A model for the condensation of a dusty plasma is constructed by considering the spherical shielding layers surrounding a dust grain test particle. The collisionless region less than a collision mean free path from the test particle is shown to separate into three concentric layers, each having distinct physics. The method of matched asymptotic expansions is invoked at the interfaces between these layers and provides equations which determine the radii of the interfaces. Despite being much smaller than the Wigner-Seitz radius, the dust Debye length is found to be physically significant because it gives the scale length of a precipitous cut-off of the shielded electrostatic potential at the interface between the second and third layers. Condensation is predicted to occur when the ratio of this cut-off radius to the Wigner-Seitz radius exceeds unity and this prediction is shown to be in good agreement with experiments.Comment: 29 pages, 4 figures, 1 table, to appear in Physics of Plasmas. Manuscript revised on May 1, 2004 to take into account accuracy of Mie scattering dust grain diameter measurement method used in Hayashi/Tachibana experiment. Model now compared to Hayashi/Tachibana experiment using measured rather than fitted dust grain diameter and using higher estimate for Te/Ti (two new references added; revisions made to two paragraphs in Sec. VII, to bottom plot of Fig. 3, and to right-most column of Table 1
    • …
    corecore