3 research outputs found

    Artificial intelligence applications and cataract management: A systematic review

    Get PDF
    Artificial intelligence (AI)-based applications exhibit the potential to improve the quality and efficiency of patient care in different fields, including cataract management. A systematic review of the different applications of AI-based software on all aspects of a cataract patient's management, from diagnosis to follow-up, was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. All selected articles were analyzed to assess the level of evidence according to the Oxford Centre for Evidence-Based Medicine 2011 guidelines, and the quality of evidence according to the Grading of Recommendations Assessment, Development and Evaluation system. Of the articles analyzed, 49 met the inclusion criteria. No data synthesis was possible for the heterogeneity of available data and the design of the available studies. The AI-driven diagnosis seemed to be comparable and, in selected cases, to even exceed the accuracy of experienced clinicians in classifying disease, supporting the operating room scheduling, and intraoperative and postoperative management of complications. Considering the heterogeneity of data analyzed, however, further randomized controlled trials to assess the efficacy and safety of AI application in the management of cataract should be highly warranted

    Effectiveness of Machine Learning Classifiers for Cataract Screening

    Get PDF
    Cataract is the leading cause of blindness and vision loss globally. The implementation of artificial intelligence (AI) in the healthcare industry has been on the rise in the past few decades and machine learning (ML) classifiers have shown to be able to diagnose patients with cataracts. A systematic review and meta-analysis were conducted to assess the diagnostic accuracy of these ML classifiers for cataracts currently published in the literature. Retrieved from nine articles, the pooled sensitivity was 94.8% and the specificity was 96.0% for adult cataracts. Additionally, an economic analysis was conducted to explore the cost-effectiveness of implementing ML to diagnostic eye camps in rural Nepal compared to traditional diagnostic eye camps. There was a total of 22,805 patients included in the decision tree, and the ML-based eye camp was able to identify 31 additional cases of cataracts, and 2546 additional cases of non-cataract

    Análisis de retinografías basado en Deep Learning para la ayuda al diagnóstico de la retinopatía diabética

    Get PDF
    La Retinopatía Diabética (RD) es una complicación de la diabetes y es la causa más frecuente de ceguera en la población laboral activa de los paísesdesarrollados. Cuando se trata de forma precoz, la pérdida de visión se puede prevenir. Para ello, es necesario que los pacientes se sometan aexámenes oftalmológicos regulares en los que se capturan y analizan imágenes de su fondo ocular o retinografías. No obstante, la creciente incidencia dela diabetes y la falta de profesionales sanitarios dificultan la detección precoz de la RD. En este contexto, los sistemas automáticos de ayuda aldiagnóstico de la RD ofrecen beneficios en escenarios clínicos y de cribado. En este TFM se pretende contribuir a esta tarea mediante el desarrollo de unmétodo automático de procesado de retinografías basado en técnicas de deep learning. Para ello se empleará el lenguaje de programación Python y setrabajará con retinografías procedentes de un contexto clínico real. Asimismo, la alumna tendrá la oportunidad de trabajar en un grupo de investigaciónmultidisciplinar, colaborando con ingenieros y médicos especialistas en oftalmología del Hospital Clínico Universitario de Valladolid.Sight is one of the most important senses for human beings. In recent years, the number of eye diseases has increased considerably and the same trend is expected in the coming years. Some of them, such as diabetic retinopathy, glaucoma or cataracts, have become major causes of vision loss worldwide. The alterations they cause in the human eye can be seen using digital images, such as fundus images. This technique is very common and useful for the diagnosis of this type of pathologies. Early detection is key to prevent the disease from reaching its most advanced stages and to make treatment more effective. Therefore patients should undergo frequent ophthalmological examinations. However, the increasing incidence of some diseases and the shortage of specialist ophthalmologists make the manual analysis of retinal images a complex and time-consuming task. In this context, automated screening systems can be very useful to assist ophthalmologists. Despite the great effectiveness of Deep learning-based systems, their application in clinical practice is still not very evident, as a consequence of their "black box" nature. In order to solve this problem, Explainable Artificial Intelligence (XAI) has been developed, a set of techniques that try to explain the decisions made by computational models when they are used for a specific task.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaMáster en Ingeniería de Telecomunicació
    corecore