276 research outputs found

    White matter alterations of the corticospinal tract in adults born very preterm and/or with very low birth weight

    Get PDF
    White matter (WM) injury, either visible on conventional magnetic resonance images (MRI) or measurable by diffusion tensor imaging (DTI), is frequent in preterm born individuals and often affects the corticospinal tract (CST). The relation between visible and invisible white mater alterations in the reconstructed CST of preterm subjects has so far been studied in infants, children and up to adolescence. Therefore, we probabilistically tracked the CST in 53 term-born and 56 very preterm and/or low birth weight (VP/VLBW, < 32 weeks of gestation and/or birth weight < 1,500 g) adults (mean age 26 years) and compared their DTI parameters (axial, radial, mean diffusivity—AD, RD, MD, fractional anisotropy—FA) in the whole CST and slice-wise along the CST. Additionally, we used the automatic, tract-based-spatial-statistics (TBSS) as an alternative to tractography. We compared control and VP/VLBW and subgroups with and without CST WM lesions visible on conventional MRI. Compared to controls, VP/VLBW subjects had significantly higher diffusivity (AD, RD, MD) in the whole CST, slice-wise along the CST, and in multiple regions along the TBSS skeleton. VP/VLBW subjects also had significantly lower (TBSS) and higher (tractography) FA in regions along the CST, but no different mean FA in the tracked CST as a whole. Diffusion changes were weaker, but remained significant for both, tractography and TBSS, when excluding subjects with visible CST lesions. Chronic CST injury persists in VP/VLBW adults even in the absence of visible WM lesions, indicating long-term structural WM changes induced by premature birth

    Increased white matter fibre dispersion and lower IQ scores in adults born preterm

    Get PDF
    Preterm birth has been associated with altered microstructural properties of the white matter and lower cognitive ability in childhood and adulthood. Due to methodological limitations of the diffusion tensor model, it is not clear whether alterations in myelination or variation in fibre orientation are driving these differences. Novel models applied to multi-shell diffusion imaging have been used to disentangle these effects, but to date this has not been used to study the preterm brain in adulthood. This study investigated whether novel advanced diffusion MRI metrics such as microscopic anisotropy and orientation dispersion are altered in adults born preterm, and whether this was associated with cognitive performance. Seventy-two preterm born participants (37 weeks gestational age) controls (34 males, mean age 30.9 ± 4.0 years) were recruited from the general population. Tensor FA was calculated with FSL, while microscopic FA and orientation dispersion entropy (ODE) were estimated using the Spherical Mean Technique (SMT). Estimated Full Scale IQ (FSIQ), Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) were obtained from the WASI-II (abbreviated) IQ test. Voxel-wise comparisons using FSL's tract-based spatial statistics were performed to test between-group differences in diffusion MRI metrics as well as within-group associations of diffusion MRI metrics and IQ outcomes. The preterm group had significantly lower FSIQ, VCI and PRI scores. Preterm subjects demonstrated widespread decreases in ODE reflecting increased fibre dispersion, but no differences in microscopic FA. Tensor FA was increased in a small area in the anterior corona radiata. Lower FA values in the preterm population were associated with lower FSIQ and PRI scores. An increase in fibre dispersion in white matter and lower IQ scores after preterm birth exist in adulthood. Advanced diffusion MRI metrics such as the orientation dispersion entropy can be used to monitor white matter alterations across the lifespan in preterm born individuals. Although not significantly different between preterm and term groups, tensor FA values in the preterm group were associated with cognitive outcome

    Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment

    Get PDF
    Cerebral palsy (CP) is the most common movement disorder in children. A diagnosis of CP is often made based on abnormal muscle tone or posture, a delay in reaching motor milestones, or the presence of gait abnormalities in young children. Neuroimaging of high-risk neonates and of children diagnosed with CP have identified patterns of neurologic injury associated with CP, however, the neural underpinnings of common gait abnormalities remain largely uncharacterized. Here, we review the nature of the brain injury in CP, as well as the neuromuscular deficits and subsequent gait abnormalities common among children with CP. We first discuss brain injury in terms of mechanism, pattern, and time of injury during the prenatal, perinatal, or postnatal period in preterm and term-born children. Second, we outline neuromuscular deficits of CP with a focus on spastic CP, characterized by muscle weakness, shortened muscle-tendon unit, spasticity, and impaired selective motor control, on both a microscopic and functional level. Third, we examine the influence of neuromuscular deficits on gait abnormalities in CP, while considering emerging information on neural correlates of gait abnormalities and the implications for strategic treatment. This review of the neural basis of gait abnormalities in CP discusses what is known about links between the location and extent of brain injury and the type and severity of CP, in relation to the associated neuromuscular deficits, and subsequent gait abnormalities. Targeted treatment opportunities are identified that may improve functional outcomes for children with CP. By providing this context on the neural basis of gait abnormalities in CP, we hope to highlight areas of further research that can reduce the long-term, debilitating effects of CP

    Motor Abilities in Adolescents Born Preterm Are Associated With Microstructure of the Corpus Callosum

    Get PDF
    Background: Preterm birth is associated with increased risk of neuromotor impairment. Rates of major neuromotor impairment (cerebral palsy) have decreased; however, in a large proportion of those who do not develop cerebral palsy impaired neuromotor function is observed and this often has implications for everyday life. The aim of this study was to investigate motor performance in preterm born adolescents without cerebral palsy, and to examine associations with alterations of motor system pathway structure. Design/Methods: Thirty-two adolescents (12 males) without cerebral palsy, born before 33 weeks of gestation (mean 27.4 weeks, SD 2.4; birth weight mean 1,084.5 g; SD 387.2), treated at a single tertiary unit, were assessed (median age 16 years; min 14, max 18). Timed performance and quality of movements were assessed with the ZĂĽrich Neuromotor Assessment. Neuroimaging included Diffusion Magnetic Resonance Imaging for tractography of the major motor tracts and measurement of fractional anisotropy as a measure of microstructure of the tracts along the major motor pathways. Separate analyses were conducted for areas with predominantly single and predominantly crossing fiber regions. Results: Motor performance in both tasks assessing timed performance and quality of movements, was poorer than expected in the preterm group in relation to norm population. The strongest significant correlations were seen between performance in tasks assessing movement quality and fractional anisotropy in corpus callosum fibers connecting primary motor, primary somatosensory and premotor areas. In addition, timed motor performance was significantly related to fractional anisotropy in the cortico-spinal and thalamo-cortical to premotor area fibers, and the corpus callosum. Conclusions: Impairments in motor abilities are present in preterm born adolescents without major neuromotor impairment and in the absence of focal brain injury. Altered microstructure of the corpus callosum microstructure appears a crucial factor, in particular for movement quality

    Diffusion magnetic resonance imaging assessment of regional white matter maturation in preterm neonates

    Get PDF
    PURPOSE: Diffusion magnetic resonance imaging (dMRI) studies report altered white matter (WM) development in preterm infants. Neurite orientation dispersion and density imaging (NODDI) metrics provide more realistic estimations of neurite architecture in vivo compared with standard diffusion tensor imaging (DTI) metrics. This study investigated microstructural maturation of WM in preterm neonates scanned between 25 and 45 weeks postmenstrual age (PMA) with normal neurodevelopmental outcomes at 2 years using DTI and NODDI metrics. METHODS: Thirty-one neonates (n = 17 male) with median (range) gestational age (GA) 32+1 weeks (24+2-36+4) underwent 3 T brain MRI at median (range) post menstrual age (PMA) 35+2 weeks (25+3-43+1). WM tracts (cingulum, fornix, corticospinal tract (CST), inferior longitudinal fasciculus (ILF), optic radiations) were delineated using constrained spherical deconvolution and probabilistic tractography in MRtrix3. DTI and NODDI metrics were extracted for the whole tract and cross-sections along each tract to assess regional development. RESULTS: PMA at scan positively correlated with fractional anisotropy (FA) in the CST, fornix and optic radiations and neurite density index (NDI) in the cingulum, CST and fornix and negatively correlated with mean diffusivity (MD) in all tracts. A multilinear regression model demonstrated PMA at scan influenced all diffusion measures, GA and GAxPMA at scan influenced FA, MD and NDI and gender affected NDI. Cross-sectional analyses revealed asynchronous WM maturation within and between WM tracts.). CONCLUSION: We describe normal WM maturation in preterm neonates with normal neurodevelopmental outcomes. NODDI can enhance our understanding of WM maturation compared with standard DTI metrics alone

    A tract-specific approach to assessing white matter in preterm infants.

    Get PDF
    Diffusion-weighted imaging (DWI) is becoming an increasingly important tool for studying brain development. DWI analyses relying on manually-drawn regions of interest and tractography using manually-placed waypoints are considered to provide the most accurate characterisation of the underlying brain structure. However, these methods are labour-intensive and become impractical for studies with large cohorts and numerous white matter (WM) tracts. Tract-specific analysis (TSA) is an alternative WM analysis method applicable to large-scale studies that offers potential benefits. TSA produces a skeleton representation of WM tracts and projects the group's diffusion data onto the skeleton for statistical analysis. In this work we evaluate the performance of TSA in analysing preterm infant data against results obtained from native space tractography and tract-based spatial statistics. We evaluate TSA's registration accuracy of WM tracts and assess the agreement between native space data and template space data projected onto WM skeletons, in 12 tracts across 48 preterm neonates. We show that TSA registration provides better WM tract alignment than a previous protocol optimised for neonatal spatial normalisation, and that TSA projects FA values that match well with values derived from native space tractography. We apply TSA for the first time to a preterm neonatal population to study the effects of age at scan on WM tracts around term equivalent age. We demonstrate the effects of age at scan on DTI metrics in commissural, projection and association fibres. We demonstrate the potential of TSA for WM analysis and its suitability for infant studies involving multiple tracts

    Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement

    Get PDF
    This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)—the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)

    Diffusion-weighted and functional magnetic resonance imaging of the brain in preterm and term-born adolescents

    Get PDF
    Magnetic resonance imaging (MRI) is widely used in clinical and research settings in the adolescent population. Technical development has allowed the use of fine-grained methods to assess both the structural and functional properties of the brain. However, the specific technical limitations and improvements are mostly studied in phantom or adult studies, which may have an impact on their reliability as research tools when studying the younger population. Very preterm (VPT) birth is associated with several neurodevelopmental impairments. The present MRI tools provide opportunities to study brain maturation in detail. This thesis is a part of the multidisciplinary longitudinal follow-up study on the development and functioning of very low birth weight infants from infancy to school age (PIPARI). The follow-up cohort consists of infants born VPT (birth weight ≤1500 g and/or gestational age <32 weeks) in Turku University Hospital in 2001–2006 and term-born controls born in 2001–2004 in the same hospital. This thesis includes only children born VPT in 2004–2006 and controls born between 2003–2004 due to an upgrade of the MRI scanner during the recruitment. In Study I, the diffusion-weighted imaging (DWI) metrics at term-equivalent age were compared to the motor outcome at 11 years of age in children born VPT. Study II assessed the effect of the susceptibility correction to the DWI metrics in a healthy adolescent population. In Study III, temporal fluctuation of the resting state brain functioning was compared between 13-year-old adolescents born VPT and at term. The main prematurity-related findings of this thesis were that the DWI metrics of the corpus callosum, left corona radiata and right optic radiation at term are associated with later motor outcome in children born VPT and that adolescents born VPT show a decrease in active time, fluidity and range in brain activation during rest. These findings may reflect the adjustments in brain microstructure and function caused by the VPT birth. Fine-grained MRI methods are reliable tools for studying the mechanisms behind the clinical phenotypes of adolescents when technical limitations and age-appropriate analysis adjustments are considered.Diffuusiopainotteisen ja toiminnallisen aivojen magneettikuvantamisen käyttö nuoruusiässä entisillä pikkukeskosilla ja täysiaikaisilla verrokeilla Magneettikuvaus (MRI) on laajassa kliinisessä ja tieteellisessä käytössä lapsia ja nuoria tutkittaessa. Tekninen kehitys mahdollistaa yhä hienojakoisempia aivojen tutkimuksia. MRI:n teknisiä korjauksia on tutkittu pääosin mallintamalla tai aikuisilla, mikä voi heikentää luotettavuutta alaikäisillä. Hyvin ennenaikaisesti syntyvillä lapsilla neurologisen kehityksen poikkeavuuksien riski on täysiaikaisena syntyviä suurempi. Poikkeavuudet voivat liittyä aivojen kehityksen muutoksiin, joita nykyisillä tekniikoilla voidaan tutkia aiempaa yksityiskohtaisemmin. Väitöskirja on osa PIPARI-tutkimusta (Pienipainoisten riskilasten käyttäytyminen ja toimintakyky imeväisiästä kouluikään). Seurantakohortti koostuu pikkukeskosina (syntymäpaino ≤1500 g ja/tai raskauden kesto <32 viikkoa) Tyksissä vuosina 2001–2006 syntyneistä lapsista sekä täysiaikaisena 2001–2004 syntyneistä verrokeista. MRI-laitteiston päivityksestä johtuen osatyöt käsittelevät pikkukeskosina vuosina 2004–2006 ja verrokkeina vuosina 2003–2004 syntyneitä. Ensimmäisessä osatyössä verrattiin aivojen diffuusiokuvantamistuloksia entisten pikkukeskosten motoriseen toimintakykyyn 11-vuotiaana. Toinen osatyö käsitteli suskeptibiliteettikorjauksen vaikutusta aivojen diffuusiokuvantamisen mittaustuloksiin. Kolmannessa osatyössä vertailtiin 13-vuotiaiden entisten pikkukeskosten ja verrokkien aivojen aktiivisuuden vaihtelua lepotilassa toiminnallisen MRI-kuvauksen aikana. Tämän väitöskirjan keskosuuteen liittyvät päätulokset olivat lasketun syntymäajan corpus callosumin, vasemman corona radiatan ja oikean optisen radaston diffuusiomittaustulosten yhteys motoriseen kehitykseen 11-vuotiaana sekä pikkukeskosina syntyneillä havaittu aivojen vähäisempi aktiivinen aika ja alentunut aktiivisuuden vaihtelun joustavuus 13-vuotiaana. Nämä löydökset saattavat olla seurausta varhaiseen syntymään liittyvistä aivojen mikrorakenteen ja toiminnan muutoksista. Hienojakoiset MRI-menetelmät vaikuttavat olevan luotettavia nuorisoikäisiä tutkittaessa, kunhan tekniset rajoitteet ja ikäsovitukset huomioidaan

    Reduced structural connectivity in non-motor networks in children born preterm and the influence of early postnatal human cytomegalovirus infection.

    Get PDF
    INTRODUCTION Preterm birth is increasingly recognized to cause lifelong functional deficits, which often show no correlate in conventional MRI. In addition, early postnatal infection with human cytomegalovirus (hCMV) is being discussed as a possible cause for further impairments. In the present work, we used fixel-based analysis of diffusion-weighted MRI to assess long-term white matter alterations associated with preterm birth and/or early postnatal hCMV infection. MATERIALS AND METHODS 36 former preterms (PT, median age 14.8 years, median gestational age 28 weeks) and 18 healthy term-born controls (HC, median age 11.1 years) underwent high angular resolution DWI scans (1.5 T, b = 2 000 s/mm2, 60 directions) as well as clinical assessment. All subjects showed normal conventional MRI and normal motor function. Early postnatal hCMV infection status (CMV+ and CMV-) had been determined from repeated screening, ruling out congenital infections. Whole-brain analysis was performed, yielding fixel-wise metrics for fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC). Group differences were identified in a whole-brain analysis, followed by an analysis of tract-averaged metrics within a priori selected tracts associated with cognitive function. Both analyses were repeated while differentiating for postnatal hCMV infection status. RESULTS PT showed significant reductions of fixel metrics bilaterally in the cingulum, the genu corporis callosum and forceps minor, the capsula externa, and cerebellar and pontine structures. After including intracranial volume as a covariate, reductions remained significant in the cingulum. The tract-specific investigation revealed further reductions bilaterally in the superior longitudinal fasciculus and the uncinate fasciculus. When differentiating for hCMV infection status, no significant differences were found between CMV+ and CMV-. However, comparing CMV+ against HC, fixel metric reductions were of higher magnitude and of larger spatial extent than in CMV- against HC. CONCLUSION Preterm birth can lead to long-lasting alterations of WM micro- and macrostructure, not visible on conventional MRI. Alterations are located predominantly in WM structures associated with cognitive function, likely underlying the cognitive deficits observed in our cohort. These observed structural alterations were more pronounced in preterms who suffered from early postnatal hCMV infection, in line with previous studies suggesting an additive effect

    Corticobulbar Tract Injury, Oromotor Impairment and Language Plasticity in Adolescents Born Preterm

    Get PDF
    Children born preterm are at risk of impairments in oromotor control, with implications for early feeding and speech development. In this study, we aimed to identify (a) neuroanatomical markers of persistent oromotor deficits using diffusion-weighted imaging (DWI) tractography and (b) evidence of compensatory neuroplasticity using functional MRI (fMRI) during a language production task. In a cross-sectional study of 36 adolescents born very preterm (&lt;33 weeks’ gestation) we identified persistent difficulties in oromotor control in 31% of cases, but no clinical diagnoses of speech-sound disorder (e.g., dysarthria, dyspraxia). We used DWI-tractography to examine the microstructure (fractional anisotropy, FA) of the corticospinal and corticobulbar tracts. Compared to the unimpaired group, the oromotor-impaired group showed (i) reduced FA within the dorsal portion of the left corticobulbar tract (containing fibres associated with movements of the lips, tongue, and larynx) and (ii) greater recruitment of right hemisphere language regions on fMRI. We conclude that, despite the development of apparently normal everyday speech, early injury to the corticobulbar tract leads to persistent subclinical problems with voluntary control of the face, lips, jaw, and tongue. Furthermore, we speculate that early speech problems may be ameliorated by cerebral plasticity – in particular, recruitment of right hemisphere language areas
    • …
    corecore