5 research outputs found

    Classifying tracked objects in far-field video surveillance

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 67-70).Automated visual perception of the real world by computers requires classification of observed physical objects into semantically meaningful categories (such as 'car' or 'person'). We propose a partially-supervised learning framework for classification of moving objects-mostly vehicles and pedestrians-that are detected and tracked in a variety of far-field video sequences, captured by a static, uncalibrated camera. We introduce the use of scene-specific context features (such as image-position of objects) to improve classification performance in any given scene. At the same time, we design a scene-invariant object classifier, along with an algorithm to adapt this classifier to a new scene. Scene-specific context information is extracted through passive observation of unlabelled data. Experimental results are demonstrated in the context of outdoor visual surveillance of a wide variety of scenes.by Biswajit Bose.S.M

    Identification of Pecan Weevils Through Image Processing

    Get PDF
    The Pecan Weevil attacks the pecan nut, causes significant financial loss and can cause total crop failure. A traditional way of controlling this insect is by setting traps in the pecan orchard and regularly checking them for weevils. The objective of this study is to develop a recognition system that can serve in a wireless imaging network for monitoring pecan weevils. Recognition methods used in this study are based on template matching. The training set consisted of 205 pecan weevils and the testing set included 30 randomly selected pecan weevils and 75 other insects which typically exist in a pecan habitat. Five recognition methods, namely, Zernike moments, Region properties, Normalized cross-correlation, String matching, and Fourier descriptors methods were used in this recognition system. It was found that no single method was sufficiently robust to yield the desired recognition rate, especially in varying data sets. It was also found that region-based shape representation methods were better suited inBiosystems and Agricultural Engineerin

    Visual Speech Recognition

    Get PDF
    In recent years, Visual speech recognition has a more concentration, by researchers, than the past. Because of the leakage of the visual processing of the Arabic vocabularies recognition, we start to search in this field. Audio speech recognition concerned with the acoustic characteristic of the signal, but there are many situations that the audio signal is weak of not exist, and this will be a point in Chapter 2. The visual recognition process focuses on the features extracted from video of the speaker. These features are to be classified using several techniques. The most important feature to be extracted is motion. By segmenting motion of the lips of the speaker, an algorithm has manipulate it in such away to recognize the word which is said. But motion segmentation is not the only problem facing the speech recognition process, segmenting the lips itself is an early step in the speech recognition process, so, to segment lips motion we have to segment lips first, a new approach for lip segmentation is proposed in this thesis. Sometimes, motion feature needs another feature to support in recognition the spoken word. So in our thesis another new algorithm is proposed to use motion segmentation by using the Abstract Difference Image from an image series, supported by correlation for registering images in the image series, to recognize ten words in the Arabic language, the words are from “one” to “ten” in Arabic language. The algorithm also uses the HU-Invariant set of features to describe the Abstract Difference Image, and uses a three different recognition methods to recognize the words. The CLAHE method as a filtering technique is used by our algorithm to manipulate lighting problems. Our algorithm based on extracting the differences details from a series of images to recognize the word, achieved an overall results 55.8%, it is an adequate result for our algorithm when integrated in an audio-visual system

    Multi-scale active shape description in medical imaging

    Get PDF
    Shape description in medical imaging has become an increasingly important research field in recent years. Fast and high-resolution image acquisition methods like Magnetic Resonance (MR) imaging produce very detailed cross-sectional images of the human body - shape description is then a post-processing operation which abstracts quantitative descriptions of anatomically relevant object shapes. This task is usually performed by clinicians and other experts by first segmenting the shapes of interest, and then making volumetric and other quantitative measurements. High demand on expert time and inter- and intra-observer variability impose a clinical need of automating this process. Furthermore, recent studies in clinical neurology on the correspondence between disease status and degree of shape deformations necessitate the use of more sophisticated, higher-level shape description techniques. In this work a new hierarchical tool for shape description has been developed, combining two recently developed and powerful techniques in image processing: differential invariants in scale-space, and active contour models. This tool enables quantitative and qualitative shape studies at multiple levels of image detail, exploring the extra image scale degree of freedom. Using scale-space continuity, the global object shape can be detected at a coarse level of image detail, and finer shape characteristics can be found at higher levels of detail or scales. New methods for active shape evolution and focusing have been developed for the extraction of shapes at a large set of scales using an active contour model whose energy function is regularized with respect to scale and geometric differential image invariants. The resulting set of shapes is formulated as a multiscale shape stack which is analysed and described for each scale level with a large set of shape descriptors to obtain and analyse shape changes across scales. This shape stack leads naturally to several questions in regard to variable sampling and appropriate levels of detail to investigate an image. The relationship between active contour sampling precision and scale-space is addressed. After a thorough review of modem shape description, multi-scale image processing and active contour model techniques, the novel framework for multi-scale active shape description is presented and tested on synthetic images and medical images. An interesting result is the recovery of the fractal dimension of a known fractal boundary using this framework. Medical applications addressed are grey-matter deformations occurring for patients with epilepsy, spinal cord atrophy for patients with Multiple Sclerosis, and cortical impairment for neonates. Extensions to non-linear scale-spaces, comparisons to binary curve and curvature evolution schemes as well as other hierarchical shape descriptors are discussed
    corecore