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Abstract

Automated visual perception of the real world by computers requires classification
of observed physical objects into semantically meaningful categories (such as 'car'
or 'person'). We propose a partially-supervised learning framework for classification
of moving objects-mostly vehicles and pedestrians-that are detected and tracked
in a variety of far-field video sequences, captured by a static, uncalibrated camera.
We introduce the use of scene-specific context features (such as image-position of
objects) to improve classification performance in any given scene. At the same time,
we design a scene-invariant object classifier, along with an algorithm to adapt this
classifier to a new scene. Scene-specific context information is extracted through
passive observation of unlabelled data. Experimental results are demonstrated in the
context of outdoor visual surveillance of a wide variety of scenes.

Thesis Supervisor: W. Eric L. Grimson
Title: Bernard Gordon Professor of Medical Engineering

3



4



Acknowledgments

I would like to thank Eric Grimson for his patient guidance and direction through

these past 18 months, and for the freedom he has allowed me at the same time in my

choice of research topic.

People in the MIT Al Lab (CSAIL?) Vision Research Group have helped create

a very friendly work environment. Thanks Gerald, Mario, Chris, Neal, Kevin, Mike,

Kinh, ... the list goes on. In particular, without Gerald's help, I would have found

navigating the strange world of computer programming much more painful. And

Chris has always been very tolerant of my questions/demands regarding his tracking

system.

The work described herein would not have been possible without the continued

support provided by my father and mother, Tapan and Neera Bose.

5



6



Contents

1 Introduction 13

1.1 Object Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Object Classification Domains . . . . . . . . . . . . . . . . . . 15

1.1.2 Applications of Far-Field Object Classification . . . . . . . . . 16

1.1.3 Challenging Problems in Far-Field Classification . . . . . . . . 17

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Outline of our Approach . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Far-Field Object Detection and Classification: A Review 21

2.1 Object Localisation in a Video Frame . . . . . . . . . . . . . . . . . . 21

2.2 Related Work: Object Classification . . . . . . . . . . . . . . . . . . . 23

2.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Role of Context in Classification . . . . . . . . . . . . . . . . . 24

2.3 Related Work: Partially Supervised Learning . . . . . . . . . . . . . . 25

2.4 Where This Thesis Fits In . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Steps in Far-field Video Processing 27

3.1 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Region Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Object Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 F iltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Video Features . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7



3.3.3 Classifier Architecture . . . . . . . . . . . . . . . . . . . . . .

3.3.4 Classification with Support Vector Machines . . . . . . . . . .

3.4 Activity Understanding using Objects . . . . . . . . . . . . . . . . . .

4 Informative Features for Classification

4.1 Features for Representing Objects . . . . . . . . . . . . .

4.2 Moment-Based Silhouette Representation . . . . . . . . .

4.2.1 Advantage of Moment-Based Representations . .

4.2.2 Additional Object Features . . . . . . . . . . . .

4.3 Using Mutual Information Estimates for Feature Selection

4.4 Feature Selection for a Single Scene . . . . . . . . . . . .

4.4.1 Information Content of Individual Features . . . .

4.4.2 Information Content of Feature Pairs . . . . . . .

4.4.3 Context Features . . . . . . . . . . . . . . . . . .

4.5 Feature Grouping for Multiple Scenes . . . . . . . . . . .

5 Transferring Classifiers across Scenes

5.1 Scene Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Scene Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Experimental Results

6.1 Selection of Experimental Data . . . . . . . . . . . . . . . . . . . . .

6.2 Classification Performance . . . . . . . . . . . . . . . . . . . . . . . .

6.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3.1 Role of Position as a Context Feature . . . . . . . . . . . . . .

6.3.2 Choice of Thresholds for Feature Selection and Grouping . . .

6.3.3 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Conclusion and Discussion

8

32

34

36

37

. . . . . 37

. . . . . 38

. . . . . 39

. . . . . 40

. . . . . 42

. . . . . 44

. . . . . 44

. . . . . 47

. . . . . 49

. . . . . 51

55

55

56

59

59

60

63

63

64

64

65



List of Figures

1-1 Examples of far-field scenes. . . . . . . . . . . . . . . . . . . . . . . . . 17

3-1 An illustration of background subtraction: (a) a video frame, (b) current

background model, and (c) pixels identified as belonging to the foreground

(shown against a light-grey background for clarity). Note the parked car

in (b), which is considered part of the background, and the shadow of the

moving car in (c), which is detected as foreground. . . . . . . . . . . . . 28

4-1 (a) Scatter plot illustrating spatial distribution of vehicles and persons in

scene (a) of Figure 1-1 (which is shown again here in (b) for convenience),

in which significant projective foreshortening is evident. (c) Using the y-

coordinate as a normalising feature for bounding-box size can greatly im-

prove performance, as demonstrated by the fact that vehicles and pedestri-

ans are clearly distinguishable in the 2D feature space. . . . . . . . . . . 50

6-1 The full set of scenes used in our experiments . . . . . . . . . . . . . . . 60

9



10



List of Tables

3.1 List of object features considered. (bg. =background, fg.=foreground,

deriv. =derivative, norm. =normalised.) Definitions and expressions for

features are given in Section 4.2. . . . . . . . . . . . . . . . . . . . . . 31

4.1 Exhaustive set of features for representing object silhouettes. . . . . . 41

4.2 Average mutual information (M.I.) scores between object features and

labels in a single scene (averaged over seven scenes), along with decision

to select (y) or reject (n) features. M.I. is measured in bits (maximum

possible score = 1.0). (p) means the decision was made after consider-

ing M.I. scores for pairs of features. bg.=background, fg.=foreground,

deriv. =derivative, norm. =normalised. . . . . . . . . . . . . . . . . . . 45

4.3 Mutual information (MI) scores of note between pairs of object fea-

tures and labels in a single scene, along with corresponding decision to

select both the features (A) or reject the first feature (B) in the pair.

MI scores are given in bits. See Section 4.4.2 for an explanation of

categories A and B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Mutual information (M.I.) scores between object features and labels

across multiple scenes, along with decision regarding whether feature

is scene-dependent (d) or scene-independent (i). M.I. is measured in

bits (maximum possible score = 1.0). . . . . . . . . . . . . . . . . . . 52

11



6.1 Performance evaluation for scene Si (Figure 6-1): test errors using var-

ious classifiers and features. 'S.D.' = scene-dependent features. 'Both'

= scene-dependent + scene-independent features. Labels for Si' are

produced in step c, and those for Si" in step d. . . . . . . . . . . . . 62

12



Chapter 1

Introduction

Computer vision (or machine vision) is currently an active area of research, with the

goal of developing visual sensing and processing algorithms and hardware that can

see and understand the world around them. A central theme in computer vision is the

description of an image (or video sequence) in terms of the meaningful objects that

comprise it (such as persons, tables, chairs, books, cars, buildings and so on). While

the concept of an 'object' comes rather naturally to humans (perhaps because of our

constant physical interaction with them), it is very difficult for a computer programme

to identify distinct objects in the image of a scene (that is, to tell which pixels in

the image correspond to which object). This problem of detection or segmentation

is an active area of research. Segmentation of a bag of image pixels into meaningful

object regions probably requires an intelligent combination of multiple visual cues:

colour, shape (as defined by a silhouette), local features (internal edges and corners),

spatial continuity and so on. The problem is made challenging by the facts that

computers, unlike people, have no a priori knowledge of the orientation and zoom

of the sensing device (i.e., the camera) and objects are often only partially visible,

due to occlusion by other objects which are in the line of sight. Nevertheless, human

performance illustrates that these problems are solvable, since they themselves can

identify objects in random images shown to them.

Shifting focus from images to video sequences might seem to make matters worse

for computer programmes, since this adds an extra temporal dimension to the data.

13



However, video provides added information that simplifies object detection in that

motion in the scene can be used as a cue for separating moving foreground objects from

a static background. Object motion can also be used as a feature for distinguishing

between different object classes. Further, by tracking objects in video across multiple

frames, more information can be obtained about an object's identity.

As the main application of our research is to activity analysis in a scene, we restrict

our attention in this thesis to video sequences captured by static cameras and seek to

detect and classify objects that move (such as vehicles and pedestrians) in the scene.

1.1 Object Classification

Given a candidate image region in which an object might be present, the goal of object

classification is to associate the correct object class label with the region of interest.

Object class labels are typically chosen in a semantically meaningful manner, such

as 'vehicle', 'pedestrian', 'bird' or 'airplane'. Humans can easily understand events

happening around them in terms of interactions between objects. For a computer to

reach a similar level of understanding about real-world events, object classification is

an important step.

Detection of moving objects in the scene is just the first step towards activity

analysis. The output of a motion-based detector is essentially a collection of fore-

ground regions (in every frame of a video sequence) that might correspond to moving

objects. Thus, the detection step acts as a filter that focuses our attention on only

certain regions of an image. Classification of these regions into different categories of

objects is still a huge challenge.

Object classification is often posed as a pattern recognition problem in a super-

vised learning framework [12]. Under this framework, probabilistic models are used

for describing the set of features of each of the N possible object classes, and the

class label assigned to a newly detected foreground region corresponds to the ob-

ject class that was most likely to have produced the set of observed features. Many

different object representations (i.e. sets of features) have been proposed for the
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purpose of classification, including 3D models, constellation of parts with character-

istic local features, raw pixel values, wavelet-based features and silhouette shape (for

example, [15, 13, 31, 32]). However, no one representation has been shown to be uni-

versally successful. This is mainly because of the wide range of conditions (including

varying position, orientation, scale and illumination) under which an object may need

to be classified.

For our purposes, object classification is a process that takes a set of observations

of objects (represented using suitable features) as input, and produces as output the

probabilities of belonging to different object classes. We require the output to be a

probability score instead of a hard decision since this knowledge can be useful for

further processing (such as determining when to alert the operator while searching

for anomalous activities).

As a supervised learning problem, the time complexity of training for most clas-

sification algorithms is quadratic in the number of labelled examples, because of the

need to calculate pairwise inner- and/or outer-products in the given feature space.

Time complexity for testing is linear in the number of inputs (and perhaps also in the

number of training examples). Classifier training is typically performed offline, while

testing may be performed either online or offline.

1.1.1 Object Classification Domains

Many visual processes, including object classification, can be approached differently

depending on the domain of application: near-, mid- or far-field. These domains are

distinguished based on the resolution at which objects are imaged, as this decides the

type of processing that can be performed on these objects. In the near-field domain,

objects are typically 300 pixels or more in linear dimension. Thus, object sub-parts

(such as wheels of a car, parts of a body, or features on a face) are clearly visible. In

the far-field domain, objects are typically 10 to 100 pixels in linear dimension. In this

situation, the object itself is not clearly visible, and no sub-parts can be detected.

Anything in between these two domains can be considered mid-field processing (where

the object as a whole is clearly visible, and some sub-parts of an object may be just
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barely visible).

We address the task of object classification from far-field video. The far-field

setting provides a useful test-bed for a number of computer vision algorithms, and

is also of practical value. Many of the challenges of near-field vision-dealing with

unknown position, orientation and scale of objects, under varying illumination and in

the presence of shadows-are characteristics of far-field vision too. Automated far-

field object classification is very useful for video surveillance, the objective of which

is to monitor an environment and report information about relevant activity. Since

activities of interest may occur infrequently, detecting them requires focused obser-

vation over prolonged intervals of time. An intelligent activity analysis system can

take much of this burden off the user (i.e. security personnel). Object classification

is often a first step in activity analysis, as illustrated in Section 1.1.2.

In far-field settings, a static or pan-tilt surveillance camera is typically mounted

well away from (and typically at some elevation above) the region of interest, such

that projected images of objects under surveillance (such as persons and vehicles)

range from 10 to 100 pixels in height. Some sample far-field scenes are shown in

Figure 1-1.

1.1.2 Applications of Far-Field Object Classification

Far-field object classification is a widely studied problem in the video surveillance

research community, since tasks such as automatic pedestrian detection or vehicle de-

tection are useful for activity analysis in a scene [20, 29, 38]. A single round-the-clock

far-field surveillance camera, installed near an office complex, car-park or airport,

may monitor the activities of thousands of objects-mostly vehicles and persons-

every day. In a surveillance system comprising multiple cameras, simply providing

the raw video data to security personnel can lead to information overload. It is thus

very useful to be able to filter events automatically and provide information about

scene activity to a human operator in a structured manner. Classification of moving

objects into predefined categories allows the operator to programme the system by

specifying events of interest such as 'send alert message if a person enters building A
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(a) (b)

(c) (d)

Figure 1-1: Examples of far-field scenes.

from area B,' or 'track any vehicles leaving area C after 3 p.m.' Classification also

provides statistical information about the scene, to answer questions such as finding

'the three most frequent paths followed by vehicles when they leave parking garage

D' or 'the number of persons entering building E between 8 a.m. and 11 a.m.'.

1.1.3 Challenging Problems in Far-Field Classification

The far-field domain is particularly challenging because of the low resolution of ac-

quired imagery: objects are generally less than 100 pixels in height, and may be as

small as 50 pixels in size. Under these conditions, local intensity-based features (such

as body-parts of humans) cannot be reliably extracted. Further, as many far-field

cameras are set up to cover large areas, extracted object features may show signif-

icant projective distortion-nearby objects appear to be larger in size and to move

faster than objects far away.

Most existing vision-based object classification systems can perform well in the
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restricted settings for which they have been built or trained, but can also fail spec-

tacularly when transferred to novel environments. Sometimes, the scene-specificity is

explicitly built into the system in the form of camera calibration. Lack of invariance

of the existing methods to some scene-dependent parameter, such as position, orienta-

tion, illumination, scale or visibility, is often the limiting factor preventing widespread

use of vision systems. This is in stark contrast to the human visual system, which

works reasonably well even under dramatic changes in environment (e.g. changing

from far-field to near-field). What is missing in automated systems is the ability to

adapt to changing or novel environments.

Our goal in the present work is to overcome the challenge of limited applicability

of far-field classification systems. This is made explicit in the problem statement

given in the next section.

1.2 Problem Statement

Given a number of video sequences captured by static uncalibrated cameras in differ-

ent far-field settings (at least some of which are a few hours in duration and contain

more than 500 objects), our objectives are:

" To demonstrate a basic object classification system (that uses the output of

Inotion-based detection and tracking steps) based on supervised learning with a

small number of labelled examples, to distinguish between vehicles, pedestrians

and clutter with reasonably high accuracy.

" To propose a systematic method for selecting object features to be used for

classification, so as to achieve high classification performance in any given scene,

but also be able to classify objects in a new scene without requiring further

supervised training.

o To propose an algorithm for transferring object-classifiers across scenes, and

subsequently adapting them to scene-specific characteristics to minimise classi-

fication error in any new scene.
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1.3 Outline of our Approach

Our work is based on an existing object-detection and tracking system that employs

adaptive background subtraction [35]. The regions of motion detected by the tracking

system are fed as input to our classification system. After a filtering step in which

most meaningless candidate regions are removed (such as regions corresponding to

lighting change or clutter), our system performs two-class discrimination: vehicles vs.

pedestrians. We restrict our attention to these two classes of objects since they occur

most frequently in surveillance video. However, our approach can be generalised to

hierarchical multiclass classification.

Our goal is to address the conflicting requirements of achieving high classifica-

tion performance in any single scene but also being able to transfer classifiers across

scenes without manual supervision. We aim to do this without any knowledge of the

position, orientation or scale of the objects of interest. To achieve the first goal, we

introduce the use of scene-specific local context features (such as image-position of an

object or the appearance of the background region occluded by it). We also identify

some other commonly used features (such as object size) as context features. These

context features can easily be learnt from labelled examples. However, in order to

be consistent with our second goal, we use only scene-invariant features to design a

baseline classifier, and adapt this classifier to any specific scene by learning context

features with the help of unlabelled data. While learning from unlabelled data is

a well-studied problem, most methods assume the distributions of labelled and un-

labelled data are the same. This is not so in our case, since context features have

different distributions in different scenes. Thus, we propose a new algorithm for incor-

porating features with scene-specific distributions into our classifier using unlabelled

data.

We make three key contributions to object classification in far-field video se-

quences. The first is the choice of suitable features for far-field object classification

from a single, static, uncalibrated camera and the design of a principled technique

for classifying objects of interest (vehicles and pedestrians in our case). The second
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is the introduction of local, scene-specific context features for improving classification

performance in arbitrary far-field scenes. The third is a composite learning algorithm

that not only produces a scene-invariant baseline classifier that can be transferred

across scenes, but also adapts this classifier to a specific scene (using context fea-

tures) by passive observation of unlabelled data.

Results illustrating these contributions are provided for a wide range of far-field

scenes, with varying types of object paths, object populations and camera orientation

and zoom factors.

1.4 Organisation of the Thesis

Chapter 2 gives an overview of the problem of object detection and classification in

far-field video, and a review of previous work done in this area. The basic moving

object detection and tracking infrastructure for far-field video on which our object

classification system is built is described in Chapter 3. Our choice of features, as

well as the feature selection and grouping process, resulting in the separation of

features into two categories-scene-dependent and scene-independent-is discussed

in Chapter 4. Chapter 5 presents our algorithm for developing a baseline object

classifier (which can be transferred to other scenes) and adapting it to new scenes.

Experimental results and analysis are presented in Chapter 6. Chapter 7 summarises

the contributions of our work and mentions possible applications, as well as future

directions for research.
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Chapter 2

Far-Field Object Detection and

Classification: A Review

This chapter presents an overview of various approaches to object classification in far-

field video sequences. We start by analysing the related problems of object detection

and object classification, and then go on to review previous work in the areas of

far-field object classification and partially-supervised classification.

2.1 Object Localisation in a Video Frame

To define an object, a candidate set of pixels (that might correspond to an object)

needs to be identified in the image. Two complementary approaches are commonly

used for localisation of candidate objects. These two approaches can be called the

motion-based approach and the object-specific (image-based) approach.

Classification systems employing the motion-based approach assume a static cam-

era and background, and use background subtraction, frame-differencing or optical

flow to detect moving regions in each video frame [14, 20, 25]. Detected regions

are then tracked over time, and an object classification algorithm is applied to the

tracked regions to categorise them as people, groups of people, cars, trucks, clutter

and so on. The key feature of this approach is that the detection process needs very

little knowledge (if any) of the types of objects in the scene. Instead, the burden of
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categorising a detected motion-region as belonging to a particular object class is left

to a separate classification algorithm. Common features for classifying objects after

motion-based detection include size, aspect ratio and simple descriptors of shape or

motion.

The other popular approach, direct image-based detection of specific object classes,

does not rely on object tracking. Instead, each image (or video-frame) is scanned in

its entirety, in search of regions which have the characteristic appearance of an ob-

ject class of interest, such as vehicles [23, 24] or pedestrians [27]. The class-specific

appearance models are typically trained on a number of labelled examples of ob-

jects belonging to that class. These methods typically use combinations of low-level

features such as edges, wavelets, or rectangular filter responses.

The main advantage of motion-based detection systems is that they serve to focus

the attention of the classification system on regions of the image (or video-frame)

where objects of interest might occur. This reduces the classification problem from

discriminating between an object and everything else in the frame (other objects

and the background) to only discriminating between objects (belonging to known or

even unknown classes). As a result, false detections in background regions having

an appearance similar to objects of interest are avoided. Motion-based detection

methods can thus lead to improved performance if the number of objects per frame

(and the area occupied by them) is relatively small. Detection of regions of motion

also automatically provides information about the projected orientation and scale of

the objects in the image (assuming the entire object is detected to be in motion, and

none of the background regions are detected as foreground).

A disadvantage of object detection methods based on background-subtraction

is that they cannot be used if the motion of the camera is unknown or arbitrary.

Also, background-subtraction cannot be used for detecting objects in a single image.

However, this is not a severe limitation in most situations, because objects of interest

will probably move at some point in time (and can be monitored and maintained even

while static) and video for long-term analysis of data has to be captured by a static

or pan-tilt-zoom camera.
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Other disadvantages of background subtraction (relative to image-based detection)

include its inability to distinguish moving objects from their shadows, and to separate

objects whose projected images overlap each other (e.g. images of vehicles in dense,

slow-moving traffic). A combination of image-based and motion-based detection (as

in [38], for example) will probably work better than either of the two methods in

isolation.

2.2 Related Work: Object Classification

Much work has been done recently on far-field object classification in images and

video sequences. In this section, we provide an overview of classification techniques

for both object specific (image-based) and motion-based detection systems.

2.2.1 Supervised Learning

Object classification can be framed as a supervised learning problem, in which a learn-

ing algorithm is presented with a number of labelled positive and negative examples

during a training stage. The learning algorithm (or classifier) estimates a decision

boundary that is likely to provide lowest possible classification error for unlabelled

test examples drawn from the same distribution as the training examples. Use of a

learning algorithm thus avoids having to manually specify thresholds on features for

deciding whether or not a given object belongs to a particular class.

Various types of learning algorithms have been used for object classification prob-

lems. A simple yet effective classifier is based on modelling class-conditional probabil-

ity densities as multivariate gaussians [22, 25]. Other types of classification algorithms

include support vector machines [27, 28, 31], boosting [24, 38], nearest-neighbour clas-

sifiers, logistic linear classifiers [10], neural networks [17] and Bayesian classification

using mixtures of gaussians.

Another important decision affecting classification performance is the choice of

features used for representing objects. Many possible features exist, including entire

images [11, 31], wavelet/rectangular filter outputs [28, 38], shape and size [20, 25],
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morphological features [14], recurrent motion [9, 20] and spatial moments [17].

Labelled training examples are typically tedious to obtain, and are thus often

available only in small quantities. Object-specific image-based detection methods re-

quire training on large labelled datasets, especially for low-resolution far-field images.

Most detection-based methods have severe problems with false positives, since even a

false-positive rate as low as 1 in 50,000 can produce one false positive every frame. To

get around this problem, Viola et al. [38] have recently proposed a pedestrian detec-

tion system that works on pairs of images and combines appearance and motion cues.

To achieve desired results, they use 4500 labelled training examples for detecting a

single class of objects, and manually fix the scale to be used for detecting pedestrians.

Methods based on background subtraction followed by object tracking suffer much

less from the problems of false positives or scale selection, and have been demonstrated

to run in real-time [35]. These methods may also be able to track objects robustly in

the presence of partial occlusion and clutter.

2.2.2 Role of Context in Classification

Use of contextual knowledge helps humans perform object classification even in com-

plicated situations. For instance, humans can correctly classify occluded objects when

these are surrounded by similar objects (such as a person in a crowd) and have no

trouble distinguishing a toy-car from a real one, even though they look alike. In many

situations, prior knowledge about scene characteristics can greatly help automated

interpretation tasks such as object classification and activity analysis. Contextual

information (such as approximate scale or likely positions of occurrence of objects)

may be manually specified by an operator for a given scene, to help detect certain

activities of interest. [6, 26].

Torralba and Sinha [37] have shown that global context can be learnt from ex-

amples and used to prime object detection. They propose a probabilistic framework

for modelling the relationship between context and object properties, representing

global context in terms of the spatial layout of spectral components. They use this

framework to demonstrate context driven focus of attention and scale-selection in real
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world scenes.

2.3 Related Work: Partially Supervised Learning

Obtaining labelled training data for object classifiers is not easy, especially if hun-

dreds of examples are needed for good performance. Methods based on exploiting

unlabelled data provide a useful alternative. Many of these were originally developed

in the machine learning community for text classification problems [4, 21], and have

recently been applied to object detection/classification problems in the machine vision

community. Levin et al. [24] use a co-training algorithm [4] to help improve vehicle

detection using unlabelled data. This algorithm requires the use of two classifiers

that work on independent features, an assumption that is hard to satisfy in practice.

Wu and Huang [39] propose a new algorithm for partially supervised learning in the

context of hand posture recognition. Stauffer [34] makes use of multiple observations

of a single object (obtained from tracking data) to propagate labels from labelled

examples to the surrounding unlabelled data in the classifier's feature space.

2.4 Where This Thesis Fits In

The problem of developing classifiers which will work well across scenes has not been

directly addressed in the machine vision community. Existing systems tend to make

scene-specific assumptions to achieve high performance. Our aim is to be able to

classify objects across a wide range of positions, orientations and scales.

To the best of our knowledge, no previous work has been done on learning local

context features (such as position and direction of motion of objects) from long-term

observation, to improve object classification in scenes observed by a static camera.

Our problem also differs from most of the well-studied problems in the machine

learning community because a sub-set of the object features that we consider-the

scene-specific context features-have different distributions in different scenes. We

propose to identify these scene-specific features and initially keep them aside. Later,
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after training a classifier using the remaining features, the information contained in

the scene-specific features is gradually incorporated by retraining with the help of

confidence-rated unlabelled data.

A method for solving a problem that is very similar at the abstract level-

combining features whose distribution is the same across data sets with other features

whose distribution is data set dependent-has been proposed in [3]. Our approach

differs from theirs in the classification algorithm used, as well as in our use of mutual

information estimates to perform feature selection and grouping.
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Chapter 3

Steps in Far-field Video Processing

This chapter presents the basic infrastructure and processing steps needed in going

from raw video to object classification and activity analysis. While the emphasis is

on the components of the object classification architecture, necessary details of other

processing steps such as background subtraction and region-tracking are given. Defi-

nitions of important terms and descriptions of standard algorithms are also provided.

3.1 Background Subtraction

Throughout our work, we rely on distinguishing objects of interest from the back-

ground in a video sequence based on the fact that the former move at some point in

time (though not necessarily in every frame). Given that a particular scene has been

observed for long enough by a static camera, and that an object of interest moves by

a certain minimum amount, background subtraction is a relatively reliable method

for detecting the object.

Background subtraction consists of two steps: maintaining a model of the back-

ground, and subtracting the current frame from this background model to obtain the

current foreground. A simple yet robust background model is given by calculating the

Inedian intensity value at each pixel over a window of frames. More complex models

can adapt to changing backgrounds by modelling the intensity distribution at each

pixel as a gaussian (or mixture of gaussians) and updating the model parameters in



(a) (b) (c)

Figure 3-1: An illustration of background subtraction: (a) a video frame, (b) current

background model, and (c) pixels identified as belonging to the foreground (shown against

a light-grey background for clarity). Note the parked car in (b), which is considered part of

the background, and the shadow of the moving car in (c), which is detected as foreground.

an online manner [35]. Adaptive backgrounding is useful for long-term visual surveil-

lance, since lighting conditions can change with time, and vehicles might be parked

in the scene (thus changing from foreground to background).

The output of the background subtraction process is a set of foreground pixels, as

illustrated in Figure 3-1. At this stage, there is not yet any concept of an object. By

applying spatial continuity constraints, connected component regions can be identified

as candidate objects. We call each connected-component in a frame a motion-region

(or an observation). The information stored for an observation include the centroid

location in the frame, the time of observation and the pixel values (colour or grey-

scale) for the foreground region within an upright rectangular bounding-box just

enclosing the connected-component.

3.2 Region Tracking

The motion-regions identified in each frame by background subtraction need to be

associated with one another (across time) so that multiple instances of the same object

are available for further processing (such as classification). This is a classic problem

of data association and tracking, which has been extensively studied for radar and

sonar applications [2]. A simple data association technique uses spatial proximity

and similarity in size to assign motion-regions in the current frame with those in the

previous frame, while allowing for starting and stopping of tracking sequences if no
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suitable match is found.

We define a tracking sequence (or a track) as a sequence of observations of (sup-

posedly) the same object. The output of the tracking system consists of a set of object

tracks. The individual observations that constitute a track are also called instances

of a track.

The advantage of performing tracking after background subtraction is that the

number of candidate regions for the inter-frame data association problem is greatly

reduced. At the same time, many false positives-regions where motion was detected

even though there was no moving object present-are eliminated by preserving only

those tracks which exceed a certain minimum number of frames in length.

For the purposes of this thesis, background subtraction and tracking were treated

as pre-processing steps, and an existing implementation of these steps (developed by

Chris Stauffer [35]) was used. We now discuss our main contribution: development

of a far-field object classification system.

3.3 Object Classification

Many image-based detection systems implicitly perform classification at the same

time as detection, as discussed in Section 2.2. Recently, a few systems have been

proposed to use background-subtraction for object detection. In such systems, object

classification is a treated as a pattern classification step, involving use of a suitable

classification algorithm that is run on the detected and tracked motion-regions with

an appropriate set of features. Our system falls into this category.

Pattern classification is a well-studied problem in the field of statistical learning. In

this section, we discuss our formulation of object classification from tracking sequences

as a supervised pattern classification problem.

3.3.1 Filtering

To demonstrate our algorithms for scene-transfer and scene-adaptation, we consider

classification of vehicles and pedestrians. As a pre-processing step, we automatically
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filter the tracking data to remove irrelevant clutter, thus reducing the classification

task to a binary decision problem. Filtering is an important step for long-term surveil-

lance, since (random sampling shows that) more than 80% of detected moving regions

are actually spurious objects. This is mainly because lighting changes take place con-

tinually and trees are constantly swaying in the wind. Features useful for filtering

include minimum and maximum size of foreground region (to filter abrupt changes in

lighting), minimum duration (to filter swaying trees), minimum distance moved (to

filter shaking trees and fluttering flags) and temporal continuity (since apparent size

and position of objects should change smoothly).

Even after filtering out clutter, there are certain classes of objects that are neither

vehicles nor pedestrians, such as groups of people and bicycles. Including these classes

in the analysis is left for future work.

3.3.2 Video Features

As of December 2003, no single set of visual features has been shown to work for

generic object classification or recognition tasks. The choice of features is thus often

task-dependent.

There are some common intuitive guidelines, such as use of appearance based

features to distinguish objects: a face has a very different appearance from a chair or

desk. However, in far-field situations, very few pixels are obtained per object, so local

appearance-based features such as parts of a face or body parts of a person cannot

be reliably detected. Low resolution data in far-field video prevent us from reliably

detecting parts-based features of objects using edge- and corner-descriptors. Instead,

we use spatial moment-based features (and their time derivatives) that provide a

global description of the projected image of the object, such as size of object silhouette

and orientation of its principal axis. The full list of object features we consider is

given in Table 3.1; definitions for these features are provided in Section 4.2. Speed,

direction of motion and other time derivatives are motion-based features that cannot

be used for object classification from a single image.

Though we pick a set of initial features manually, we evaluate them automatically
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Feature Feature

size in pixels (po,o) 1st deriv. 6
norm. 1st deriv. po,o 2nd deriv. 6

norm. 2nd deriv. pio,o 3rd deriv. #6
norm. 3rd deriv. p0,0 4th deriv. 06
norm. 4th deriv. po,o

'q4,0 (invariant 4th moment)
x-coordinate 'q3,1 (invariant 4th moment)
y-coordinate 72,2 (invariant 4th moment)

velocity magnitude '11,3 (invariant 4th moment)
velocity direction T/0,4 (invariant 4th moment)

acceleration magnitude 1st deriv. 'q4,o

acceleration direction 2nd deriv. T14,0

1st deriv. 773 ,1
principal axis orientation 2nd deriv. 773,1

1st deriv. orientation 1st deriv. 772,2

2nd deriv. orientation 2nd deriv. T/2,2

3rd deriv. orientation 1st deriv. r71,3
#1 (invariant 2nd moment) 2nd deriv. r11,3
#2 (invariant 2nd moment) 1st deriv. 70,4

1st deriv. #1 2nd deriv. 770,4
2nd deriv. 01 r75,o (invariant 5th moment)
3rd deriv. 01 74,1 (invariant 5th moment)
4th deriv. 01 73,2 (invariant 5th moment)
1st deriv. 02 72,3 (invariant 5th moment)
2nd deriv. #2 71,4 (invariant 5th moment)
3rd deriv. #2 770,5 (invariant 5th moment)
4th deriv. #2 1st deriv. 15,0

03 (invariant 3rd moment) 1st deriv. 74,1

#4 (invariant 3rd moment) 1st deriv. 73,2

#5 (invariant 3rd moment) 1st deriv. 72,3

#6 (invariant 3rd moment) 1st deriv. 71,4

1st deriv. 03 1st deriv. r7O,5
2nd deriv. #3
3rd deriv. #3 percentage occupancy
4th deriv. 03 1st deriv. occupancy
1st deriv. 04 2nd deriv. occupancy
2nd deriv. 4
3rd deriv. #4 average bg. intensity
4th deriv. #4 average fg. intensity
1st deriv. 05 average bg. hue
2nd deriv. #s average fg. hue
3rd deriv. #s 1st deriv. fg. intensity
4th deriv. s 1st deriv. fg. hue

Table 3.1: List of object features considered. (bg.=background,
deriv. =derivative, norm.=nornalised.) Definitions and expressions

given in Section 4.2.

fg.=foreground,

for features are
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using mutual information estimates. This is described in Chapter 4. Our reasons for

choosing the features mentioned are also discussed there.

Video sequences provide us with two kinds of features, which we call instance

features and temporal features. Instance features are those that can be associated

with every instance of an object (that is, with each frame of a tracking sequence). The

size of an object's silhouette and the position of its centroid are examples of instance

features. Temporal features, on the other hand, are features that are associated

with an entire track, and cannot be obtained from a single frame. For example,

the mean aspect-ratio or the Fourier coefficients of image-size variation are temporal

features. Temporal features can provide dynamical information about the object, and

can generally only be used after having observed an entire track (or some extended

portion thereof). However, temporal features can be converted into instance features

by calculating them over a small window of frames in the neighbourhood of a given

frame. For example, apparent velocity of the projected object is calculated in this

way.

3.3.3 Classifier Architecture

Tracking sequences of objects can be classified in two ways: classifying individual

instances in a track separately (using instance features) and combining the instance-

labels to produce an object-label, or classifying entire object tracks using temporal

features. We chose an instance classifier, for two reasons. Firstly, labelling a single

object produces many labelled instances. This helps in learning a more reliable clas-

sifier from a small set of labelled objects. Secondly, a single instance feature (e.g.

position of an object in a frame) often provides more information about the object

class than the corresponding temporal feature (e.g. mean position of an object).

Each detected object is represented by a sequence of observations, 0 {Oi}, 1 

i < n, where n is the number of frames for which the object was tracked. Classifi-

cation of this object as a vehicle or pedestrian can be posed as a binary hypothesis-

testing problem, in which we choose the object class label l following the maximum-
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likelihood (ML) rule [12]:

1* = argmax p(O I ) (3.1)

(i.e. choose ij corresponding to the higher class-conditional density p(OIl1 )). We use

the ML rule instead of the maximum a posteriori (MAP) rule because we found the

prior probabilities, p(lj), to be strongly scene-dependent. For instance, while some

scenes contain only vehicles, some other contain three times as many pedestrians as

vehicles. To develop a scene-invariant classifier, we assume p(li) = p(l2).

The likelihood-ratio test (obtained from Equation 3.1) involves evaluation of p(01, ..., On l1),

the joint probability of all the observations conditioned on the class label. For images

of a real moving object, this joint distribution depends on many physical and geomet-

ric factors such as object dynamics and imaging parameters. A simplifying Markov

approximation would be to model the joint probability as a product of terms repre-

senting conditional probabilities of each observation given only its recent neighbours

in the sequence. However, we choose to avoid estimation of even these conditional

probabilities, as their parameters vary with the position of the observation (due to

projective distortion). Instead, we search for (approximately) independent observa-

tions in the sequence, since the joint probability for independent samples is simply
n

given by p(OiIlj) (i.e., no additional probability distributions are needed to model

inter-observation dependences). For every i and j, the probability p(Oill) can in

turn be obtained from the posterior probability of the label given the observation,

p(ljlOi), by applying Bayes' rule (and cancelling out the marginal observation prob-

abilities upon taking the likelihood ratio):

p(Oil(1) = . (3.2)

This means that our classifier can be run separately on each independent observation

in a sequence, to produce the corresponding posterior probability of the class label.

We approximate independent samples by looking for observations between which the

imaged centroid of the object moves a minimum distance. This is useful, for example,

to avoid using repeated samples from a stopped object (which is quite common for
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both vehicles and persons in urban scenes). In our implementation, the minimum

distance threshold is equal to the object-length.

3.3.4 Classification with Support Vector Machines

In choosing a suitable classifier, we considered using a generative model (such as a

mixture of Gaussians), but decided against it to avoid estimating multi-dimensional

densities from a small amount of labelled data. Instead, we chose a discriminative

model-support vector machine (SVM) with soft margin and Gaussian kernel-as

our instance classifier. (The use of a soft margin is necessary since the training data

are non-separable.) In the SVM formulation (for nonseparable data), we look for

the maximum-margin separating hyperplane (parameterised by w and b) for the N

training points xi E Rk (in a k-dimensional feature space) and corresponding labels

yj E {-1, 1}, given the optimisation problem [7]:

Minimise - W -W + 7 i subject to (3.4) and > 0, (3.3)
2

where we have introduced N nonnegative variables = ( 1, 2, ... , -N) such that

yi(w -xi + b) ;> 1 - i, i = 1, 2, ... , N, (3.4)

to account for the fact that the data are nonseparable. As in the separable case, this

can be transformed into the dual problem:

N N

Maximise E zz 2 E aeaajyiyyK(xi, xj) (3.5)
i=1 2i,j=l

subject to

EZyi = 0 and O ai < C, i = 1,2,...,N (3.6)
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where a, are the Lagrange multipliers (with associated upper-bound C) and K rep-

resents the SVM kernel function. Applying the Kuhn-Tucker conditions, we get

ai(yi(K(w, xi) + b) - 1I + i) 0 (3.7)

(C - a2 )i= 0 (3.8)

It is useful to distinguish between the support vectors for which ai < C and those

for which ai = C. In the first case, from condition (3.8) it follows that i = 0, and

hence, from condition (3.7), these support vector are margin vectors. On the other

hand, support vectors for which ai = C are mostly either misclassified points, or

correctly classified points within the margin. The bounds on the Lagrange multipliers

help to provide a 'soft margin', whereby some examples can lie within the margin, or

even on the wrong side of the classification boundary.

For training our baseline (scene-invariant) object classifier (Section 5.1), we fixed

C to a large value (= 1,000). Our scene-adaptation algorithm (Section 5.2), however,

uses different values of C for different 'labelled' examples, depending on the confidence

of the associated label.

One disadvantage of using SVMs is that the output, di, is simply the signed

distance of the test instance from the separating hyperplane, and not the posterior

probability of the instance belonging to an object class. Posterior probabilities are

needed to correctly combine instance labels using the ML rule to obtain an object

label. To get around this problem, we retrofit a logistic function g(d) that maps the

SVM outputs di into probabilities [30]:

1
g (di) -1 + exp(-di) (3.9)

The posterior probability is then given by

P(yi = 1 Idi, A) = g (A di), (3.10)
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where the parameter A is chosen such as to maximise the associated log-likelihood

N

1 (A) = log P(yi I di, A). (3.11)

The posterior probabilities thus obtained are used both for classifying sequences of

observations (using Equation 3.1) and for associating confidences with the 'labels' of

the classified objects for use in adapting the classifier to a specific scene (Section 5.2).

To clarify, test error corresponds to the fractional number of incorrect object labels,

not instance labels.

3.4 Activity Understanding using Objects

Object classification is typically not an end in itself. Activity analysis in a scene

typically relies on object classification. In some sufficiently constrained situations

(such as a pedestrian zone), objects from only one class may appear, so classification

becomes trivial (since any large moving object must belong to the object class of

interest). However, this is not the case in general. Activities of interest might include

detecting pedestrians on a street, counting the number of vehicles belonging to dif-

ferent classes on a highway, understanding activities of people in a car-park, ensuring

normal movement of airplanes at an airport and tracking vehicles that take unusual

paths through a scene. A good object classifier should be able to perform its task in

all these situations with the minimum possible task-specific information.
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Chapter 4

Informative Features for

Classification

It is commonly acknowledged that object representation is key to solving several ma-

chine vision tasks. In this chapter, we discuss the set of features we chose to represent

objects. Some of the features we consider are not commonly used for object classifi-

cation; we explain our motivation for using them and demonstrate their utility. We

also propose a principled technique to select object features for use in a classification

task, which takes into account whether the characteristics of the scene are known

a priori. This allows us to identify two categories of features: scene-dependent (or

context) and scene-independent features. These two categories of features are used

in the next chapter to develop object-classifiers that work in a wide range of scenes.

4.1 Features for Representing Objects

The input to our classification system consists of sequences of tracked foreground

regions, or observations. After filtering (Section 3.3.1), each observation consists of a

2D silhouette of a vehicle or pedestrian located at a specified position in the image,

along with the corresponding pixel-values (in colour or gray-level). As a first approx-

imation, we can ignore the pixel-values (though we will later use this information).

This is because we expect vehicles to be painted differently, and pedestrians to wear
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clothing of a wide variety of colours, so that very little information about the object

class is likely to be present in the recorded intensity values. Thus, we are essentially

left with a sequence of binary object silhouettes (each observed at a known position

and time).

The problem of classifying binary images (i.e. silhouettes) has been studied ex-

tensively in the image processing and pattern recognition communities (see chapter 9

of [19] for an overview). In order to ensure that the set of features used is sufficiently

descriptive, it is a good idea to choose an exhaustive set of features, such as moment-

based or Fourier descriptors. However, using the entire set of exhaustive features is

neither practical nor necessary, since

1. the obtained silhouettes are corrupted by noise, which renders some of the

features useless, and

2. we are interested in discriminating between object classes, not in providing a

complete description of the members of either class.

Keeping both of these in mind, we resort to performing feature selection for classifica-

tion. The information-theoretic concept of mutual information gives us a principled

way of doing this selection. First, however, we need to discuss the set of features we

consider.

4.2 Moment-Based Silhouette Representation

We have chosen a moment-based representation for the shapes of object silhouettes.

The (p + q)th-order spatial moment of a silhouette f(x, y) is given by

mp,q = f (x, y)pyq dx dy, p, q = 0, 1, 2,... (4.1)

where f(x, y) = 1 for points inside the silhouette and zero elsewhere. For digital

images, these moments can be approximated by replacing the above integrals by

summations.
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The infinite set of moments mp,q, p, q = 0, 1, 2, ... uniquely determines an arbitrary

silhouette. Low-order moments of binary images include the size in pixels (zeroth

moment), position of centroid (first moment) and moment of inertia along orthogonal

axes (second moment).

4.2.1 Advantage of Moment-Based Representations

Spatial moments are closely related to features that have been used successfully for

various perceptual tasks, such as dispersedness or compactness of a silhouette. At the

same time, the moments form an exhaustive set, so there is no arbitrariness involved

in coming up with features. Neither is there any danger of missing any features.

Another advantage of moments is that they can easily be made invariant to 2D

transformations such as translation, rotation, reflection and scaling [18]. This is useful

since such transformations are quite common for objects moving on a ground plane

and imaged by a surveillance camera from an arbitrary position and orientation. Such

moment invariants can also be useful within a single scene, as they cancel some of

the effects of projective distortion as an object moves around on the ground plane.

To achieve translation-invariance, the moments defined in Equation 4.1 are replaced

by the central moments

JJp,q (X - )P(y - y)If (x, y) dx dy (4.2)

where t = mi,o/mo,o and y = mo,i/mo,o. To achieve scale-invariance in addition to

translation-invariance, the central moments can be converted to normalised moments:

'rp,q = (1p,u o) = (p + q + 2)/2. (4.3)

To achieve rotation- and reflection-invariance in addition to translation-invariance,

moment invariants for second and third order moments are given by:

01 = P2,o + PO,2 (4.4)
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2 (p2,0 - P0,2) + 4pil (4.5)

03 (P3,0 - 3pi,2) 2 + (po,3 - 3P2,1) 2  (4.6)

(4 (P3,0 + P1,2)2 + (pO,3 + P2,1)2 (4.7)

5 = P0 -(p3, -3P1,2)(P3,o -+ P1,2)[(P3,0 + p1,2) 2 - 3 (po,3 + P2,1)2

+ (p0,3 - 3p 2 ,1)(po, 3 + P2,1)((po,3 + P2,1)2 - 3 (P3,0 + P1,2) 2 ] (4.8)

0 = (P2,o - Po,2)[(P3,o + P1,2) 2 
- (p0,3 + P2,1) 2]

+ 4 pi,i(P3,o + P1,2)(Po,3 + P2,1). (4.9)

Higher-order moments can be made rotation-invariant by first calculating the

principal axis of the object silhouette and rotating the silhouette to align the principal

direction with the horizontal axis. The principal axis is obtained as the eigenvector

corresponding to the larger eigenvalue of the sample covariance matrix of the 2D

silhouette (which in turn can be expressed in terms of the second central moments).

Moment invariants have previously been employed for pattern recognition tasks [18,
36]. In the present work, we shall also consider moments that are not invariant, and

show that these features contain useful information in certain circumstances.

For real-world data, moment-based representations are good for distinguishing be-

tween objects of different classes (which have gross differences), but not for differenti-

ating objects of the same class based on fine differences (such as between undamaged

and damaged machine parts), since the latter only differ in higher order moments

that are significantly affected by noise. While there have been efforts directed to-

wards robust use of moments [1, 33], we did not consider these for our classification

task as we are able to achieve good results using the standard low-order moments.

4.2.2 Additional Object Features

Object moments provide a complete description of a single observation, at a particular

instant of time. To provide a comprehensive description across time, we need to

add a descriptor that captures time variation. A simple yet exhaustive set of such

descriptors is the set of time derivatives of all orders. The zeroth order derivatives
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Order of time-derivative
0 1 2 3

0 size rate-of-change in size
Order of 1 position (of centroid) velocity acceleration jolt/jerk
moment 2 orientation and inertia rate-of-change of inertia

3 skewness

Table 4.1: Exhaustive set of features for representing object silhouettes.

are the moments themselves. Moments of all orders, along with their time derivatives

of all orders, contain complete information for characterising any tracking sequence.

An illustration of this exhaustive set of features, as well as names for some of the

commonly encountered members of this set, is given in Table 4.1.

It should be noted that since second and higher order moments have been nor-

malised for scale-invariance (as discussed above), their time derivatives will also be

normalised. Derivatives of silhouette size (the zeroth order moment) can also be

normalised by dividing by the silhouette size.

So far we have ignored the information present in the object's appearance (i.e.

pixel-values within the foreground region). We now add a few descriptors such as

average foreground and background intensity and hue, and their time derivatives;

the complete list is given in Table 4.2, where most of these features are shown to

contribute little to the classification task.

In practice, it is not possible to accurately calculate very high order spatial mo-

ments from image data. To approximate the contribution of high order moments, we

introduce an extra feature: percentage occupancy. This is defined as the percentage of

pixels corresponding to the object silhouette within the smallest principal-axis-aligned

bounding rectangle around the silhouette.

41



4.3 Using Mutual Information Estimates for Fea-

ture Selection

Having decided our feature space for object representation, we need to perform feature

selection. Feature selection is necessary not only for computational reasons (to pick

a finite number of features from the infinite feature set defined above) but also to

remove non-informative features before training an object classifier, and thus avoid

overfitting when training on a small labelled data set.

It might seem that the right thing to do for the purpose of feature selection

is simply to calculate test errors (or cross-validation errors) for different groups of

features, and pick the group giving lowest error. However, this would make the feature

selection process classifier dependent. Our aim is not to suggest that one classifier

is better than another, but rather to provide a framework for feature selection that

can be used with any classifier. Thus, we perform both feature selection and feature

grouping by calculating mutual information estimates.

The mutual information (MI), I(X; Y), between a continuous random vector X

and a discrete random variable Y is given by [8]:

I(X; Y) = H(X) - H(X Y), (4.10)

where H(X) and H(X Y) are the entropy of X and the conditional entropy of X

given Y respectively. I(X; Y) is a non-negative, symmetric function of X and Y.

For the purpose of feature selection, X represents the set of features and Y repre-

sents the object class label. The required entropies can then be estimated from data

using kernel-based non-parametric estimates of marginal and conditional densities,

and plugged into Equation 4.10 to obtain an MI estimate.

Intuitively speaking, the mutual information between two variables is a measure

of how much of the uncertainty in the value of one variable is reduced by knowing

the value of the other. Thus, features having high MI with class labels are likely to

be very useful in correctly predicting the object class. It can be proved that among
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a set of features, the single feature having the highest MI with a label is also the one

which, if used alone, will give the lowest classification error.

Most classification tasks make use of more than one feature. Unfortunately, sim-

ply calculating MI scores between individual features and labels and choosing the

features with the highest scores is not guaranteed to give the most informative set of

features for classification. In order to be (theoretically) optimal, MI scores need to be

calculated between all possible sets of features and labels.For instance, if a road cuts

diagonally across the scene and people walk on footpaths beside it, the individual MI

scores of x- and y- image coordinates with labels might be low, but the two consid-

ered jointly may accurately classify the object. In principle, this argument holds for

all possible sets of features. However, is in generally computationally infeasible to

calculate mutual information between all labels and all possible sets of features. In

practice, it is unlikely that three or more features calculated from real-world scenes

will conspire to give significantly better classification results than pairs of features

acting together. Therefore, we repeat our MI calculations for all possible pairs of

features.

The mutual information I(X 1 , X 2; Y) between a pair of features (X 1, X 2 ) and the

label Y can be expanded as follows [8]:

I(X 1 , X 2 ; Y) = I(Xi; Y) + I(X2 ; YlX 1 ). (4.11)

Since MI is non-negative, the above equation shows that the mutual information for

any pair of features is never less than the MI for either of the individual features. In

the limiting case, if one of the features (say X1) perfectly predicts the class label,

or there exists a deterministic relation connecting the two features being considered,

the second term in Equation 4.11 is zero. On the other hand, this second term can

be large for features which are individually poor in helping to determine the object

class, but jointly provide significant information about the class label.

In the next two sections, we use MI estimates for our features to perform feature

selection and feature grouping.
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4.4 Feature Selection for a Single Scene

In this section, we assume that all the objects whose features are being considered

were taken from a single scene. We will generalise this to the case of multiple scenes

in Section 4.5, where we consider feature grouping in addition to feature selection.

4.4.1 Information Content of Individual Features

Mutual information (MI) scores between class labels and a number of low-order mo-

ments, time-derivatives of moments, and intensity/colour-based features were esti-

mated. Moments up to fifth order and time derivatives up to fourth order were

calculated. In general, high order time derivatives tended to be less significant (i.e.

have lower MI scores) than low order ones, due to the effects of noise. The MI scores

for the more significant features-those whose scores are greater than 0.05 bits-are

shown in Table 4.2.

From the MI scores, it is clear that time derivatives play an important role in

differentiating vehicles from persons. This is because vehicles are rigid objects with a

fixed silhouette shape, while the shape of a pedestrian's silhouette changes throughout

the walking cycle. In fact, changes in the pedestrian silhouette are approximately

periodic, so both low-order and high-order time derivatives provide information about

the object class.

After looking at the distribution of MI scores for our set of features, a threshold of

0.25 bits was chosen as the minimum required MI for an informative feature. Features

below this threshold were considered individually irrelevant to the classification task

(but were not discarded yet, as they might be relevant in a pair with another feature).

Features above this threshold were considered individually relevant for classification

(but were not guaranteed to be selected, as two or more of these features might provide

essentially the same information, and hence be redundant). The final feature selection

decision was made after estimating the information content of pairs of features, as

discussed next.
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Feature TMI I y/n Feature MI y/n

size in pixels (Io,o) 0.71 y 1st deriv. 06 0.60 n(p)
norm. 1st deriv. po,o 0.43 y 2nd deriv. #6 0.60 n(p)
norm. 2nd deriv. po,o 0.55 y 3rd deriv. #6 0.62 n(p)
norm. 3rd deriv. po,o 0.39 y 4th deriv. #6 0.59 n(p)
norm. 4th deriv. po,o 0.32 n(p)

T14,0 (invariant 4th moment) 0.71 n(p)
x-coordinate 0.22 y(p) T]3,1 (invariant 4th moment) 0.46 y
y-coordinate 0.17 y(p) 'q2,2 (invariant 4th moment) 0.32 y

velocity magnitude 0.39 y 71,3 (invariant 4th moment) 0.26 y
velocity direction 0.13 y(p) 770,4 (invariant 4th moment) 0.31 y

acceleration magnitude 0.16 n 1st deriv. T/4,0 0.44 y
acceleration direction 0.08 n 2nd deriv. N4,0 0.37 y

1st deriv. 73,1 0.21 n
principal axis orientation 0.41 y 2nd deriv. 'q3,1 0.14 n

1st deriv. orientation 0.19 n 1st deriv. 'q2,2 0.27 y
2nd deriv. orientation 0.27 y 2nd deriv. 772,2 0.18 n
3rd deriv. orientation 0.20 n 1st deriv. 771,3 0.44 y

01 (invariant 2nd moment) 0.41 y 2nd deriv. 71,3 0.41 y
#2 (invariant 2nd moment) 0.40 y 1st deriv. 770,4 0.32 y

1st deriv. 01 0.66 y 2nd deriv. N/,4 0.22 n
2nd deriv. #1 0.57 y 75,0 (invariant 5th moment) 0.41 y
3rd deriv. 01 0.51 n(p) 74,1 (invariant 5th moment) 0.35 y
4th deriv. #1  0.46 n(p) 13,2 (invariant 5th moment) 0.29 y
1st deriv. 02 0.78 y T12,3 (invariant 5th moment) 0.18 n
2nd deriv. #2 0.74 y T1,4 (invariant 5th moment) 0.24 n
3rd deriv. #2 0.71 n(p) "7o,s (invariant 5th moment) 0.20 n
4th deriv. #2  0.64 n(p) 1st deriv. 17,O 0.44 y

#3 (invariant 3rd moment) 0.50 y 1st deriv. 74,1 0.35 y
#4 (invariant 3rd moment) 0.55 y 1st deriv. 'q3,2 0.26 y
05 (invariant 3rd moment) 0.51 y 1st deriv. 72,3 0.24 n
#6 (invariant 3rd moment) 0.38 y 1st deriv. 71,4 0.25 n

1st deriv. 3 0.68 y 1st deriv. 17O,5 0.29 y
2nd deriv. 03 0.68 y
3rd deriv. 03 0.65 n(p) percentage occupancy 0.32 n(p)
4th deriv. #3 0.64 n(p) 1st deriv. occupancy 0.24 n
1st deriv. 4 0.75 n(p) 2nd deriv. occupancy 0.17 n
2nd deriv. q4 0.77 n(p)
3rd deriv. #4 0.76 n(p) average bg. intensity 0.63 y
4th deriv. 04 0.74 n(p) average fg. intensity 0.16 n
1st deriv. 05 0.77 y average bg. hue 0.21 n
2nd deriv. #5  0.73 y average fg. hue 0.24 n
3rd deriv. 05 0.76 n(p) 1st deriv. fg. intensity 0.04 n
4th deriv. 05 0.72 n(p) 1st deriv. fg. hue 0.23 n

Table 4.2: Average mutual information (M.I.) scores between object features and
labels in a single scene (averaged over seven scenes), along with decision to select
(y) or reject (n) features. M.I. is measured in bits (maximum possible score = 1.0).
(p) means the decision was made after considering M.I. scores for pairs of features.
bg.=background, fg.=foreground, deriv. =derivative, norm. =normalised.
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Feature 1 Feature 2 MI Category

x-coordinate y-coordinate 0.51 A
velocity direction orientation 0.66 A

norm. fourth deriv. po,o #5 0.53 B
third deriv. #1 5s 0.54 B

fourth deriv. #1 #5 0.54 B
third deriv. #2 first deriv. #5 0.79 B

fourth deriv. #2 first deriv. 05 0.79 B

third deriv. #3 first deriv. 05 0.81 B

fourth deriv. 03 second deriv. 05 0.77 B

first deriv. #4 first deriv. #5 0.81 B

second deriv. (4 first deriv. 05 0.80 B

third deriv. #4 first deriv. #5 0.80 B
fourth deriv. #4 first deriv. #5 0.80 B

third deriv. 05 first deriv. #2 0.81 B
fourth deriv. #5 first deriv. #2 0.79 B
first deriv. #6 first deriv. (5 0.79 B

second deriv. #6 first deriv. #5 0.78 B
third deriv. #6 first deriv. (5 0.79 B

fourth deriv. #6 first deriv. 05 0.81 B

T/4,0 first deriv. (5 0.81 B
percentage occupancy 74,1 0.39 B

Table 4.3: Mutual information (MI) scores of note between pairs of object features
and labels in a single scene, along with corresponding decision to select both the
features (A) or reject the first feature (B) in the pair. MI scores are given in bits.
See Section 4.4.2 for an explanation of categories A and B.
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4.4.2 Information Content of Feature Pairs

Mutual information scores for pairs of features were estimated and studied with the

purpose of identifying features belonging to either of two categories:

* category A: features which are individually irrelevant, but relevant when con-

sidered jointly with other features, and

" category B: features which are individually relevant, but redundant when con-

sidered jointly with other features.

As stated earlier, both these decisions can be made conclusively only after considering

all possible groups of features. Here we assume that only pairs of features are jointly

relevant (and that groups of three or more features will not provide significantly more

information than any pair of features). We now present the algorithms used to decide

the category membership of features.

An individually irrelevant feature X1 (identified in Section 4.4.1) belongs to cate-

gory A if there exists some other feature X 2 such that I(X 1 , X 2 ; Y) - I(Xi; Y) > i1

and I(X 1 , X 2 ; Y) - I(X2 ; Y) > i 1, for a chosen threshold ii. This means that the

information provided by the two features considered jointly is substantially greater

than that provided by each individually, so there is merit in selecting these features.

For our experiments, we set Zi = 0.10 after observing the distribution of difference in

MI between pairs of variables and individual variables.

For the purposes of testing category B membership, all category A members are

considered individually relevant. Then, an individually relevant feature X 3 (identified

in Section 4.4.1 or in category A) belongs to category B if there exists another feature

X 4 such that all the following four conditions are satisfied:

1. I(X4 ; Y) > X 3 ; Y),

2. I(X4 , X 3; Y) - I(X 4; Y) < i2 ,

3. for all other features X 5, I(X5 , X 3 ; Y) - I(X 4 , X 3; Y) < i 2 and
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4. for each feature X 5 such that I(X 5 , X 3; Y) - I(X 3; Y) > i3 and I(X 5 , X 3; Y) -

I(X5 ; Y) > i3, I(X5 , X 4 , X 3 ; Y) - I(X4 ; Y) < i3 ,

for suitable thresholds i2 and i3 . The basic idea behind these four conditions is to find

an individually relevant feature X 4 which can provide (almost) all the information

provided by feature X 3 , thus rendering the latter redundant. Conditions 1 and 2

ensure that the two features jointly do not provide much more information than X 4

alone. Condition 3 checks that X 3 considered jointly with any other feature does

not provide much more information than X 4 considered jointly with that other fea-

ture. Condition 4 further checks that for those features X5 which provide substantial

information when considered jointly with X 3 , the information contained in X 3 , X 4

and X 5 , all three considered jointly, is not substantially more than the information

in X 4 alone. Though this last condition subsumes the other three, it is tested last

as it is computationally more expensive to calculate 3-variable MI scores. For our

experiments, the thresholds chosen (by observing the distribution of MI scores) were

Z2 =0.05 and i= 0.10.

The most relevant mutual information results (corresponding to category A or B

membership) between class labels and pairs of features are given in Table 4.3. In this

table, the column labelled 'Feature 1' corresponds to X 1 or X 3 , while the column

labelled 'Feature 2' corresponds to X 2 or X 4 .

The final feature selection (for any single scene) is as follows:

" features that are individually irrelevant and not in category A are rejected,

" features that are in category B are rejected, and

" all remaining features are selected.

These results are given in Table 4.2, in the column containing 'y' (selected) or '

(rejected); the list of selected features is also repeated in Table 4.4.

It is important that while the features rejected above are unlikely to be useful for

further processing, the features selected above are not always guaranteed to be useful.

These features should give good classification performance when both training and
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testing a classifier on data from any single scene. However, we are interested in the

more general case of training in one scene and testing in another scene. Among the

features selected above, there are some that will not be useful in this general case.

We study these next.

4.4.3 Context Features

We define context features as features that are useful for classification (training and

testing) in any single scene, but not for training in one scene and testing in another

scene. Context features are thus scene-dependent/specific. They do not transfer

across scenes, because they have different distributions in different scenes.

For some features, such as image position of an object, it is clear that the fea-

ture is scene-specific. However, for others such as aspect ratio or orientation, it is

not obvious whether the feature is scene-dependent. Therefore, we estimate mutual

information scores between features and labels for data drawn from different scenes

in Section 4.5. However, before describing these calculations, let us gain some insight

into how context features help in classification in a single scene.

We incorporate some elementary contextual knowledge-that which can be learnt

from prolonged observation of a scene--in our classification framework in the form of

scene-dependent context features. To demonstrate the role played by scene-dependent

context features, we performed a pair of experiments with and without these features.

Position and direction of motion were used as context features, since their distribution

is clearly scene-dependent. We chose two scenes (scenes (a) and (c) in Figure 1-1)

having a total of 500 tracked objects and randomly selected 30 labelled objects from

each scene as the training sets T and T, for the respective scenes. We trained

two SVM classifiers for each scene. Classifiers Q8, and C7 were trained on T and

T, respectively using size (in pixels) and speed (i.e. magnitude of velocity), but

without position or direction of motion, as features, and then tested on other objects

from the respective scenes, giving test errors of 9.4% and 3.2%. Classifiers C" and

C2 were trained on T and T, respectively after including position and direction

of motion in the feature-space. The test errors obtained in this case were 0.7% and
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Figure 4-1: (a) Scatter plot illustrating spatial distribution of vehicles and persons in scene

(a) of Figure 1-1 (which is shown again here in (b) for convenience), in which significant

projective foreshortening is evident. (c) Using the y-coordinate as a normalising feature

for bounding-box size can greatly improve performance, as demonstrated by the fact that

vehicles and pedestrians are clearly distinguishable in the 2D feature space.

0.8% respectively. To show that this trend does not depend on the particular classifier

chosen, we repeated the experiments with a generative model-based classifier. The

two class-conditional densities were modelled as multivariate gaussians with unknown

mean and variance. Inclusion of scene-specific features for scenes (a) and (c) led to

reduction of test error by 7% and 2% respectively.

In both cases, the addition of context features to the classifier's feature space

led to significant improvement in test performance. There are two reasons for this

improvement. Firstly, the chosen context features (position and direction of motion)

capture the inherent regularities in structured scenes. For instance, the different

spatial distributions of object classes in an urban scene are a result of the scene

structure, i. e. roads and footpaths. Detecting roads and footpaths automatically and

reliably is a hard problem; it is much easier to learn the spatial distribution of object

classes from labelled data (as shown in Figure 4-1(a)), and use this for enhancing

object classification. In the absence of structural regularities (in an open field, for

example), context features would not provide extra information. Fortunately, most

urban/highway scenes do exhibit some degree of structure. Thus, even in scenes such

as car-parks, where vehicles and pedestrians can in principle occur at the same loca-

tions, they tend to have different preferred paths of motion in practice. The second

reason has to do with the projective distortion introduced by the camera, as a result

of which size and speed of objects are affected by object position. Normalisation
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of image measurements by correcting for the distortion will help to classify objects

reliably. However, normalisation with a single camera is a difficult problem unless

some assumptions are made about the scene or camera. Using image position as a

feature is a non-parametric way of performing normalisation. This is clearly demon-

strated in Figure 4-1(c), where by simply using y-position in the image along with

size of bounding-box as object features, and a linear SVM kernel, test error of 3%

was obtained for scene (a) considered above.

4.5 Feature Grouping for Multiple Scenes

Feature grouping is necessary to separate scene-specific context features from scene-

independent features, so that only the latter are used for training a scene-invariant

baseline classifier. Mutual information is once again used as a tool to perform this

categorisation. This time, however, the data set used for MI calculations consists of

objects taken from a group of different scenes (and not just from a single scene). As

a result, one can expect a wide variation in the values of scene-specific features in

this data set. This should lead to lowered MI scores for these features. On the other

hand, scene-independent features calculated for objects from different scenes should

be similar, so that their MI scores will remain (almost) unchanged. In practice, we

differentiate between these two groups of features by setting a threshold do on the

change in MI between the single-scene data set and the multiple-scene data set. If the

change in MI exceeds this threshold, the feature is considered to be a scene-specific

context feature. Otherwise, it is considered to be a scene-independent feature.

Mutual information scores between individual features and labels for a multiple-

scene data set created from 7 scenes are given in Table 4.4. The corresponding

decisions for scene-dependent ('d') or scene-independent ('i') features are also indi-

cated. The threshold used, do = 0.20, was chosen after observing the distribution of

MI scores. Once again, MI scores for pairs of variables (not shown here) played a role

for some features (as indicated by a 'p' in parentheses). The scenes were chosen so

as to adequately represent common variations in height, viewing angle and zoom of
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Feature MI i/d Feature MI i/d]

size in pixels (1o,o) 0.47 d 2nd deriv. #3 0.61 i

norm. 1st deriv. po,o 0.14 d 1st deriv. #5 0.75 i

norm. 2nd deriv. po,o 0.17 d 2nd deriv. #5 0.74 i

norm. 3rd deriv. po,o 0.13 d 73,1 (invariant 4th moment) 0.33 i

x-coordinate 0.02 d 72,2 (invariant 4th moment) 0.31 i

y-coordinate 0.02 d T/1,3 (invariant 4th moment) 0.23 i

velocity magnitude 0.35 i 710,4 (invariant 4th moment) 0.24 i

velocity direction 0.04 i(p) 1st deriv. 'q4,0 0.41 i

principal axis orientation 0.23 i(p) 2nd deriv. 4,0 0.32 i

2nd deriv. orientation 0.24 i 1st deriv. 2/2,2 0.26 i

q1 (invariant 2nd moment) 0.41 i 1st deriv. 71,3 0.47 i

#2 (invariant 2nd moment) 0.20 d 1st deriv. 70,4 0.32 i

1st deriv. q1 0.48 d 775,o (invariant 5th moment) 0.42 i

2nd deriv. q1 0.36 d 74,1 (invariant 5th moment) 0.38 i

1st deriv. #2 0.47 d 73,2 (invariant 5th moment) 0.34 i

2nd deriv. #2 0.40 d 1st deriv. 775,0 0.41 i

#3 (invariant 3rd moment) 0.44 i 1st deriv. J4,1 0.31 i

04 (invariant 3rd moment) 0.51 i 1st deriv. 273,2 0.25 i

5 (invariant 3rd moment) 0.60 i 1st deriv. 27O,5 0.23 i

46 (invariant 3rd moment) 0.47 i average bg. intensity 0.21 d

1st deriv. #3 0.65 i

Table 4.4: Mutual information (M.I.) scores between object features and labels across

multiple scenes, along with decision regarding whether feature is scene-dependent (d)

or scene-independent (i). M.I. is measured in bits (maximum possible score = 1.0).

camera. Equal numbers of vehicle and pedestrian observations from each scene were

represented in the data sets, thus giving all scenes equal importance and assuming

equal populations of the two object classes.

A few of the results deserve special mention. While most of the moment invariants

do indeed turn out to be scene-independent, some of the second-moment invariants

and their derivatives have been classified as scene-specific. This is because the invari-

ance in question is only with respect to translation, rotation, reflection and scaling.

A typical scene change also involves some non-isotropic scaling (i.e. affine transfor-

mation) due to change in elevation of the camera above the ground plane. Further,

most objects have cast shadows, whose effect in a given scene depends on the lighting

direction characteristic of that scene. These two factors are fixed for a given scene,

but may differ between scenes.
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An alternative method for determining the appropriate grouping of features is to

calculate mutual information between features and scenes, for a given object class. If

a feature has high MI with scenes, it takes on distinct values in different scenes and is

thus scene-specific. On the other hand, a feature having low MI with scenes has ap-

proximately the same distribution in different scenes and is thus scene-independent.

While this method is technically applicable, it requires many more data samples from

each scene than the method used above in order to estimate scene-specific distribu-

tions needed for MI calculation.

Based on the above grouping of features, we propose to develop transferable clas-

sifiers by training them on only the scene-independent features. Most classification

methods do not transfer to novel scenes mainly because they use object size, aspect

ratio or some feature closely related to these-features that we identify here as scene-

specific-in their classifier feature space. Note that even though size has a reasonable

score across a group of scenes, the fact that this score is much lower than the score

in a single scene implies that it is a rather poor feature for transfer to at least some

type of scenes (hence we consider it scene-dependent).

We have shown that scene-specific context features can be used for reducing clas-

sification error when training and testing in the same scene. While this in itself is

useful for many surveillance applications, we really would like to be able to transfer

classifiers across scenes, while still enjoying the benefits of using context features. We

propose a scene transfer and adaptation algorithm to do exactly this next.
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Chapter 5

Transferring Classifiers across

Scenes

Having identified scene-dependent and scene-independent features in the previous

chapter, we now describe the main learning algorithm for achieving both scene-

transfer and scene-adaptation. Scene transfer can be defined as the process of de-

veloping a scene-invariant classifier using training from one (or a few) scenes. The

essential requirement is that classification performance should be reasonably high in

any scene, irrespective of the position, orientation and scale of objects. Scene adap-

tation can be defined as the process of improving a baseline scene-invariant classifier

in a specific scene by using scene-specific context features. This can be done with the

help of unlabelled data.

5.1 Scene Transfer

Scene-dependent features are of no utility in designing a scene-invariant classifier.

Thus, the design of a scene-invariant classifier is perhaps obvious: train a classifier

using only scene-independent features on a small labelled set of examples from 2 or

3 scenes (or even a single scene). As described in the next section, the classification

accuracy of this baseline classifier is around 80%. More importantly, the average

posterior probability of the label given an observation is expected to be higher for
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correctly classified test examples than for incorrectly classified ones in a new scene.

Our scene-adaptation algorithm is now employed to improve classification perfor-

mance in a novel scene by using unlabelled data to incorporate information about

scene-dependent features.

5.2 Scene Adaptation

We propose the following novel decision-directed learning [12] algorithm for scene-

adaptation:

1. Apply the baseline classifier, Cbase, to the new scene, to find 'labels', L 1 , for

unlabelled examples along with associated posterior probabilities.

2. Convert posterior probabilities to confidences by shifting and scaling. Probabil-

ities of 0.0 and 1.0 are mapped to confidences of -100% and 100% respectively.

(The 'label' of a single unlabelled instance, i.e., the sign of the posterior proba-

bility of that observation given a class, can be different from the overall 'label'

for the unlabelled object, as indicated by a negative confidence value.)

3. Train a scene-specific classifier using only the scene-independent features on

both the original labelled examples Lo and the 'labels' L1 generated for unla-

belled data, after making two changes:

" For each unlabelled object, the 5% least confident instances are removed

from further consideration (to afford some robustness to gross outliers).

Each remaining instance is then assigned the same confidence value, equal

to the mean confidence of these instances.

" The bound on the Lagrange multiplier (in the SVM formulation: see Equa-

tion 3.6) for each training instance from an unlabelled object is set as

Ci = 1000xconfidence value.

This step produces a partially-adapted classifier, Cprt, which does not yet use

scene-specific context features.
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4. Apply Cpat to the unlabelled data to generate a second set of 'labels', L 2, and

associated confidences for unlabelled data.

5. Repeat step 3, using both scene-dependent and scene-independent features, but

only the 'labels' in L 2 , to obtain a fully-adapted classifier, Cf ul.

In step 3, the 5% cutoff was chosen by observing the distribution of object confi-

dences and the corresponding object silhouettes.

Since, by definition, true labels are not available for unlabelled data, there is a

trade-off between using examples that are classified with high confidence (i.e. far

from the decision boundary, and thus not very informative) and using ones that are

labelled with low confidence (i.e. close to the boundary and thus more informative,

but also more likely to be incorrect). A meaningful balance is obtained by varying

the Lagrange multipliers for 'labelled' instances in proportion to the corresponding

confidences. A large Lagrange multiplier heavily penalises an incorrect classification of

the corresponding training example. Thus, our algorithm is able to allow points near

the classification boundary (of the baseline classifier) to modify the adapted solution

slightly, without letting incorrect (but low-confidence) 'labels' significantly disrupt

the training process. The equalisation of confidences within a tracking sequence is

done to avoid using incorrect instance labels with high confidence for retraining. The

underlying assumption is that incorrectly classified objects for the baseline classifier

will have lower confidence on average than correctly classified ones.

The classifier needs to be adapted in two steps (3 and 5) because the distribution

of scene-dependent features in the labelled and unlabelled data can be completely

unrelated. Also, a two-step process gradually removes the information provided by

true labels (from training scenes) and increases reliance on the (uncertain) information

provided by the new scene. In the next section, we give experimental results to

illustrate the effectiveness of this approach.
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Chapter 6

Experimental Results

In this chapter, we describe the series of experiments performied for testing our clas-

sification algorithms, both within a single scene and across multiple scenes. This is

accompanied by an analysis of the results obtained.

6.1 Selection of Experimental Data

We used a data set of more than 1500 object tracks from ten different scenes (shown

in Figure 6-1) for testing our algorithms. The scenes used for our experiments are

shown in Figure 6-1. These scenes were chosen after studying a large number of

far-field surveillance videos available on the Internet, to try and accurately represent

the range of camera positions, orientations and zoom factors that are found in real

situations. The video sequences from the chosen scenes were captured during daylight

hours (in order to achieve good tracking) at different times of the year. Object class

distributions range from highway scenes containing only cars to scenes containing

three times as many pedestrians as cars. Cast shadows and reflections are present in

some scenes. Video was captured and processed at the rate of about 8 frames per

second at a resolution of 320 x 240 pixels. The typical size of a pedestrian was 10 x 25

pixels, while that of a vehicle was 30 x 60 pixels.

The object tracks were obtained from real-time tracking data, and corresponded to

over 5 hours of tracking (spread across 10 scenes). After filtering out clutter, we were
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Figure 6-1: The full set of scenes used in our experiments

left with 1737 object tracks. 26 of these were actually clutter that was not filtered out;

these were removed from the database manually. 194 objects corresponding to groups

of pedestrians, bicyclists or gross tracking errors (such as two objects tracked as one

over many frames) were also removed manually. However, many tracks containing

less severe errors (such as two objects temporarily merging, or an object temporarily

merging with the background) were left in the database.

The database of tracks was then split up as follows. Model selection to fix the

bandwidth of the SVM Gaussian kernel was carried out on a set of 50 objects. The

mutual information calculations described in Chapter 4 were performed on a separate

set of 80 objects from 7 scenes. The remaining object tracks were used for training

and testing.

6.2 Classification Performance

To test our algorithms, we performed two types of classification experiments:

* Without scene transfer: training on 30 objects, testing on 150 objects in the

same scene.

" With scene transfer/adaptation: training on 30 objects from 2-3 scenes, testing

on 150 objects in a new scene.
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For each training set considered, object features were first calculated for all (indepen-

dent) observations in each track, giving rise to n, positive and n2 negative samples.

Then, an equal number n3 of samples from each class were randomly chosen from

these samples (where n3 < ni and n3 < n2, and was typically around 300). For each

test set considered, object features for all (independent) observations were used.

Average classification errors for the above two types of experiments (averaged over

5 trials) are as follows:

" Without scene transfer, using only scene-independent features: 5.9%

" Without scene transfer, using both scene-dependent and scene independent fea-

tures: 0.3%

" With scene transfer, using only scene-dependent features (baseline classifier):

11.8%

" With scene transfer and scene adaptation (using both types of features): 5.6%

The average reduction in error due to adaptation with the help of scene-specific

context features is thus 6.2%.

For the sake of comparison, we also tried training classifiers on both scene-dependent

and scene-independent features from one scene and then testing using these features

in a different scene. The average classification error in this case was 26%. Thus, as

expected, the classifier was mislead by the scene-dependent features in its training

set.

We present a detailed analysis of one scene-transfer/adaptation experiment. The

labelled set TL, used for training the baseline classifier Cbase, consisted of 30 objects

(17 vehicles and 13 persons-300 instances from each class) from scenes S4 and S5

shown in Figure 6-1. This baseline classifier was applied to a novel scene, Si. Of the

150 test objects in this new scene, the assigned labels L, for 133 objects were correct.

Thus, test error (after scene transfer, but without adaptation) was 11.3%. This is

comparable to some existing classification systems which are trained and tested on the

same scene. The average confidence for vehicle labels was 47%, while that for persons
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a b c d e
Labelled training set scene (Si) (Si) (S4/S5) (S4/S5) None

Unlabelled 'training set' scene None None None (Si') (Sl")
Test set scene (Si) (Si) (Si) (Si) (Si)

Transfer ? No No Yes Yes Yes
Adaptation ? No No No Yes (Partial) Yes (Full)

Type of features S.D. Both S.D. S.D. Both
% Test error 8.4 0.4 11.3 9.3 6.2

Table 6.1: Performance evaluation for scene S1 (Figure 6-1): test errors using various
classifiers and features. 'S.D.' = scene-dependent features. 'Both' = scene-dependent
+ scene-independent features. Labels for Si' are produced in step c, and those for
S1" in step d.

was 37% (note that 0% represents no confidence, as it corresponds to a posterior

probability of 0.5). Average confidence for correct labels was 51%, while that for

incorrect labels was 24%. This difference in confidences is because the range of feature

variation among persons is much less than the corresponding range among vehicles.

In the scene adaptation process, bounds on the Lagrange multipliers were varied

according to the average object confidences, as described in Section 5.2. After partial

adaptation, test error (using only scene-independent features) decreased to 9.3%.

After full adaptation, the error further decreased to 6.2%. Thus, our bootstrapping

technique resulted in a performance boost of about 5% for this particular scene.

The above results are summarised in Table 6.1. For comparison, the results of

training scene-independent and scene-specific classifiers on a labelled set T taken

from scene S1 itself are also repeated here. As expected, best classification results are

obtained by training on T1, and using both scene-dependent and scene-independent

features. The fully-adapted classifier, working with both types of features, demon-

strates a significant improvement over the baseline classifier, and even the partially-

adapted classifier. This is because of the significant projective distortion evident in

this scene, as well as the characteristic spatial distribution of vehicles and pedestrians.

The resulting classification performance is better than simply using scene-independent

features for training in scene S1 itself.
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6.3 Performance Analysis

It is useful to analyse some aspects of performance improvement from the use of

scene-specific context features. In this section we seek to address the following issues:

" How much of the improvement upon adding position as a feature comes from

its role in normalising projectively distorted features (such as size and velocity)

and how much from the inherent spatial regularity present in the scene?

" How would performance be affected by changing the thresholds used in selecting

and grouping features?

* What are the failure cases of the current algorithm?

6.3.1 Role of Position as a Context Feature

Position is a useful context feature both because of spatial regularities in real world

scenes (such as cars staying on roads and pedestrians on footpaths) and because

of the implicit normalisation of projectively distorted features achieved by including

position in the feature space. To estimate the relative importance of these two factors,

we performed three tests using a hand-picked subset of features. In all cases, training

and testing were performed in the same scene. In the first test, size and speed

were the only features used, leading to a test error of 9%. In the second test, size,

speed and position (x- and y-coordinates) were used together, leading to test error

of 0.5%. Before performing the third test, projective distortion was corrected for in

the test scene. This was done by manually specifying a number of point-coordinates

for rectifying the ground plane up to a similarity transformation from the real world

plane [16]. Finally, for the third test, size, speed and position were calculated in the

rectified scene and then used for classification, resulting in a test error of 1.4%. Thus,

we conclude that 7.6% of the improvement in performance came from the effect of

normalisation, while 0.9% was due to the spatial regularity of object paths in the

scene.
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It is interesting to note that in some scenes, such as one in which objects recede

from the camera along parallel lines, one of the two position coordinates only pro-

vides normalisation information, while the other only provides class-specific spatial

information.

6.3.2 Choice of Thresholds for Feature Selection and Group-

ing

We varied the thresholds used for performing feature selection and grouping (Sec-

tions 4.4 and 4.5) by 25% in either direction and studied the effects on choice of

features and eventually classification performance. The two extreme cases involved

selection of 12 more and 10 fewer features. Average classification errors, both without

and with scene transfer, varied by a maximum of about 1%.

6.3.3 Failure Cases

In general, cases where the original scene-specific classifier (before transfer) fails in-

clude occlusion (as the object leaves the scene), objects that are consistently far

away from the camera (and hence have sizes of around 10 x 5 pixels, producing very

noisy features), objects whose silhouettes were not complete (due to similarity in re-

flectance from foreground and background) and objects that were merged with one

another while tracking. Additional cases where the transferred and adapted classi-

fier fails (but the original classifier works) include objects that show large feature

variations as they move through the scene, or scenes with prominent shadows.
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Chapter 7

Conclusion and Discussion

We have proposed a system for far-field object classification from video sequences

that addresses some of the significant challenges in the field. Use of a discrimina-

tive (SVM) instance-classifier on simple object descriptors, along with a probabilistic

method for combining instance confidences into object labels, allows for very low

classification error (less than 1%) using only a small number of objects. The con-

cept of scene-specific features, as well as some new features (position/direction of

motion) are introduced and shown to benefit classification. Scene-independent and

scene-dependent features are identified using mutual information estimates in order

to design scene-invariant classifiers. At the same time, a decision-directed learning

algorithm has been proposed to adapt classifiers to scene-specific characteristics by

carefully using unlabelled data. Our scene-invariant classifier has over 85% accu-

racy; an further improvement of about 6% is obtained by using our scene-adaptation

algorithm.

Though our scene-transfer algorithm has been developed using a support vector

machine classifier, the concepts of using scene-specific context features and learning

from unlabelled data to boost classification performance are independent of the choice

of classifier.

It should be noted that selection of context features is task-dependent. For in-

stance, if all the scenes considered have approximately the same scale, it makes sense

to use object size as a scene-independent feature for training the baseline classifier. In
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fact, this was the case when we first experimented with tracking data from a smaller

set of scenes [5]. Our intention here is to provide a principled mechanism to be

able to decide on which features are scene-dependent. The key to correctly applying

this mechanism to a specific problem lies in selecting a representative data set (that

suitably models the variation across scenes) for mutual information calculation.

In future, we would like to extend the classification framework to other object

classes (e.g. groups of people) or sub-classes (e.g. cars, vans and trucks). A hi-

erarchical approach is probably best for this purpose, wherein groups of people are

classified as people at the first level, and later identified as a separate class.

Classification will certainly benefit from improvements in tracking (such as fewer

holes in objects). Best possible results will probably be obtained by integrating

object tracking and classification, whereby knowledge of object class is fed back into

the tracking system to help locate the object in the next frame.
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