168,590 research outputs found

    Identifying functional gene sets from hierarchically clustered expression data: map of abiotic stress regulated genes in Arabidopsis thaliana

    Get PDF
    We present MultiGO, a web-enabled tool for the identification of biologically relevant gene sets from hierarchically clustered gene expression trees (). High-throughput gene expression measuring techniques, such as microarrays, are nowadays often used to monitor the expression of thousands of genes. Since these experiments can produce overwhelming amounts of data, computational methods that assist the data analysis and interpretation are essential. MultiGO is a tool that automatically extracts the biological information for multiple clusters and determines their biological relevance, and hence facilitates the interpretation of the data. Since the entire expression tree is analysed, MultiGO is guaranteed to report all clusters that share a common enriched biological function, as defined by Gene Ontology annotations. The tool also identifies a plausible cluster set, which represents the key biological functions affected by the experiment. The performance is demonstrated by analysing drought-, cold- and abscisic acid-related expression data sets from Arabidopsis thaliana. The analysis not only identified known biological functions, but also brought into focus the less established connections to defense-related gene clusters. Thus, in comparison to analyses of manually selected gene lists, the systematic analysis of every cluster can reveal unexpected biological phenomena and produce much more comprehensive biological insights to the experiment of interest

    Gene ordering in partitive clustering using microarray expressions

    Get PDF
    A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was shown to be useful in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis, there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches. A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution, using microarry gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover, the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution

    MADIBA: A web server toolkit for biological interpretation of Plasmodium and plant gene clusters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology makes it possible to identify changes in gene expression of an organism, under various conditions. Data mining is thus essential for deducing significant biological information such as the identification of new biological mechanisms or putative drug targets. While many algorithms and software have been developed for analysing gene expression, the extraction of relevant information from experimental data is still a substantial challenge, requiring significant time and skill.</p> <p>Description</p> <p>MADIBA (MicroArray Data Interface for Biological Annotation) facilitates the assignment of biological meaning to gene expression clusters by automating the post-processing stage. A relational database has been designed to store the data from gene to pathway for <it>Plasmodium</it>, rice and <it>Arabidopsis</it>. Tools within the web interface allow rapid analyses for the identification of the Gene Ontology terms relevant to each cluster; visualising the metabolic pathways where the genes are implicated, their genomic localisations, putative common transcriptional regulatory elements in the upstream sequences, and an analysis specific to the organism being studied.</p> <p>Conclusion</p> <p>MADIBA is an integrated, online tool that will assist researchers in interpreting their results and understand the meaning of the co-expression of a cluster of genes. Functionality of MADIBA was validated by analysing a number of gene clusters from several published experiments – expression profiling of the <it>Plasmodium </it>life cycle, and salt stress treatments of <it>Arabidopsis </it>and rice. In most of the cases, the same conclusions found by the authors were quickly and easily obtained after analysing the gene clusters with MADIBA. </p

    Evaluation of statistical correlation and validation methods for construction of gene co-expression networks

    Get PDF
    High-throughput technologies such as microarrays have led to the rapid accumulation of large scale genomic data providing opportunities to systematically infer gene function and co-expression networks. Typical steps of co-expression network analysis using microarray data consist of estimation of pair-wise gene co-expression using some similarity measure, construction of co-expression networks, identification of clusters of co-expressed genes and post-cluster analyses such as cluster validation. This dissertation is primarily concerned with development and evaluation of approaches for the first and the last steps – estimation of gene co-expression matrices and validation of network clusters. Since clustering methods are not a focus, only a paraclique clustering algorithm will be used in this evaluation. First, a novel Bayesian approach is presented for combining the Pearson correlation with prior biological information from Gene Ontology, yielding a biologically relevant estimate of gene co-expression. The addition of biological information by the Bayesian approach reduced noise in the paraclique gene clusters as indicated by high silhouette and increased homogeneity of clusters in terms of molecular function. Standard similarity measures including correlation coefficients from Pearson, Spearman, Kendall’s Tau, Shrinkage, Partial, and Mutual information, and Euclidean and Manhattan distance measures were evaluated. Based on quality metrics such as cluster homogeneity and stability with respect to ontological categories, clusters resulting from partial correlation and mutual information were more biologically relevant than those from any other correlation measures. Second, statistical quality of clusters was evaluated using approaches based on permutation tests and Mantel correlation to identify significant and informative clusters that capture most of the covariance in the dataset. Third, the utility of statistical contrasts was studied for classification of temporal patterns of gene expression. Specifically, polynomial and Helmert contrast analyses were shown to provide a means of labeling the co-expressed gene sets because they showed similar temporal profiles

    FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data

    Get PDF
    BACKGROUND: Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. To this aim, existing clustering approaches, mainly developed in computer science, have been adapted to microarray data analysis. However, previous studies revealed that microarray datasets have very diverse structures, some of which may not be correctly captured by current clustering methods. We therefore approached the problem from a new starting point, and developed a clustering algorithm designed to capture dataset-specific structures at the beginning of the process. RESULTS: The clustering algorithm is named Fuzzy clustering by Local Approximation of MEmbership (FLAME). Distinctive elements of FLAME are: (i) definition of the neighborhood of each object (gene or sample) and identification of objects with "archetypal" features named Cluster Supporting Objects, around which to construct the clusters; (ii) assignment to each object of a fuzzy membership vector approximated from the memberships of its neighboring objects, by an iterative converging process in which membership spreads from the Cluster Supporting Objects through their neighbors. Comparative analysis with K-means, hierarchical, fuzzy C-means and fuzzy self-organizing maps (SOM) showed that data partitions generated by FLAME are not superimposable to those of other methods and, although different types of datasets are better partitioned by different algorithms, FLAME displays the best overall performance. FLAME is implemented, together with all the above-mentioned algorithms, in a C++ software with graphical interface for Linux and Windows, capable of handling very large datasets, named Gene Expression Data Analysis Studio (GEDAS), freely available under GNU General Public License. CONCLUSION: The FLAME algorithm has intrinsic advantages, such as the ability to capture non-linear relationships and non-globular clusters, the automated definition of the number of clusters, and the identification of cluster outliers, i.e. genes that are not assigned to any cluster. As a result, clusters are more internally homogeneous and more diverse from each other, and provide better partitioning of biological functions. The clustering algorithm can be easily extended to applications different from gene expression analysis

    Identification of microRNA-mRNA modules using microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA expression and are involved in numerous cellular processes. Consequently, miRNAs are an important component of gene regulatory networks and an improved understanding of miRNAs will further our knowledge of these networks. There is a many-to-many relationship between miRNAs and mRNAs because a single miRNA targets multiple mRNAs and a single mRNA is targeted by multiple miRNAs. However, most of the current methods for the identification of regulatory miRNAs and their target mRNAs ignore this biological observation and focus on miRNA-mRNA pairs.</p> <p>Results</p> <p>We propose a two-step method for the identification of many-to-many relationships between miRNAs and mRNAs. In the first step, we obtain miRNA and mRNA clusters using a combination of miRNA-target mRNA prediction algorithms and microarray expression data. In the second step, we determine the associations between miRNA clusters and mRNA clusters based on changes in miRNA and mRNA expression profiles. We consider the miRNA-mRNA clusters with statistically significant associations to be potentially regulatory and, therefore, of biological interest.</p> <p>Conclusions</p> <p>Our method reduces the interactions between several hundred miRNAs and several thousand mRNAs to a few miRNA-mRNA groups, thereby facilitating a more meaningful biological analysis and a more targeted experimental validation.</p

    A systematic model to predict transcriptional regulatory mechanisms based on overrepresentation of transcription factor binding profiles

    Get PDF
    An important aspect of understanding a biological pathway is to delineate the transcriptional regulatory mechanisms of the genes involved. Two important tasks are often encountered when studying transcription regulation, i.e., (1) the identification of common transcriptional regulators of a set of coexpressed genes; (2) the identification of genes that are regulated by one or several transcription factors. In this study, a systematic and statistical approach was taken to accomplish these tasks by establishing an integrated model considering all of the promoters and characterized transcription factors (TFs) in the genome. A promoter analysis pipeline (PAP) was developed to implement this approach. PAP was tested using coregulated gene clusters collected from the literature. In most test cases, PAP identified the transcription regulators of the input genes accurately. When compared with chromatin immunoprecipitation experiment data, PAP's predictions are consistent with the experimental observations. When PAP was used to analyze one published expression-profiling data set and two novel coregulated gene sets, PAP was able to generate biologically meaningful hypotheses. Therefore, by taking a systematic approach of considering all promoters and characterized TFs in our model, we were able to make more reliable predictions about the regulation of gene expression in mammalian organisms

    Gene Expression Clustering and Selected Head and Neck Cancer Gene Signatures Highlight Risk Probability Differences in Oral Premalignant Lesions

    Get PDF
    Background: Oral premalignant lesions (OPLs) represent the most common oral precancerous conditions. One of the major challenges in this field is the identification of OPLs at higher risk for oral squamous cell cancer (OSCC) development, by discovering molecular pathways deregulated in the early steps of malignant transformation. Analysis of deregulated levels of single genes and pathways has been successfully applied to head and neck squamous cell cancers (HNSCC) and OSCC with prognostic/predictive implications. Exploiting the availability of gene expression profile and clinical follow-up information of a well-characterized cohort of OPL patients, we aim to dissect tissue OPL gene expression to identify molecular clusters/signatures associated with oral cancer free survival (OCFS). Materials and methods: The gene expression data of 86 OPL patients were challenged with: an HNSCC specific 6 molecular subtypes model (Immune related: HPV related, Defense Response and Immunoreactive; Mesenchymal, Hypoxia and Classical); one OSCC-specific signature (13 genes); two metabolism-related signatures (3 genes and signatures raised from 6 metabolic pathways associated with prognosis in HNSCC and OSCC, respectively); a hypoxia gene signature. The molecular stratification and high versus low expression of the signatures were correlated with OCFS by Kaplan\u2013Meier analyses. The association of gene expression profiles among the tested biological models and clinical covariates was tested through variance partition analysis. Results: Patients with Mesenchymal, Hypoxia and Classical clusters showed an higher risk of malignant transformation in comparison with immune-related ones (log-rank test, p = 0.0052) and they expressed four enriched hallmarks: \u201cTGF beta signaling\u201d \u201cangiogenesis\u201d, \u201cunfolded protein response\u201d, \u201capical junction\u201d. Overall, 54 cases entered in the immune related clusters, while the remaining 32 cases belonged to the other clusters. No other signatures showed association with OCFS. Our variance partition analysis proved that clinical and molecular features are able to explain only 21% of gene expression data variability, while the remaining 79% refers to residuals independent of known parameters. Conclusions: Applying the existing signatures derived from HNSCC to OPL, we identified only a protective effect for immune-related signatures. Other gene expression profiles derived from overt cancers were not able to identify the risk of malignant transformation, possibly because they are linked to later stages of cancer progression. The availability of a new well-characterized set of OPL patients and further research is needed to improve the identification of adequate prognosticators in OPLs

    On the Comparison of State- and Transition-based Analysis of Biological Relevance in Gene Co-expression Networks

    Get PDF
    Traditional correlation network analysis typically involves creating a network using gene expression data and then identifying biologically relevant clusters from that network by enrichment with Gene Ontology or pathway information. When one wants to examine these networks in a dynamic way - such as between controls versus treatment or over time - a snapshot approach is taken by comparing network structures at each time point. The biological relevance of these structures are then reported and compared. In this research, we examine the same snapshot networks but focus on the enrichment of changes in structure to determine if these results give any more insight into the mechanisms behind observed phenotypes. Our main hypothesis is that more information, particularly related to potential dynamic changes, can be obtained through transition­-based analysis of biological networks. To test this hypothesis, we compare gene expression data from the mouse hippocampus at three different time points: young, middle-aged, and aged, and compare the traditional state-based approach to the dynamic transition-based enrichment approach. In this study we use a clustering approach (SPICi) designed specifically for clustering of large biological networks. The results of this study verify an inconsistency between traditional and dynamic structure identification approaches through biological enrichment. These results highlight an intriguing issue for those performing, critiquing, and using network based approaches in their research - that a black box or workflow type of approach typically used in network based research can be supplemented with a transition­-based approach to support movement from in silico to in vivo experimentation of target genes

    Knowledge-guided multi-scale independent component analysis for biomarker identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many statistical methods have been proposed to identify disease biomarkers from gene expression profiles. However, from gene expression profile data alone, statistical methods often fail to identify biologically meaningful biomarkers related to a specific disease under study. In this paper, we develop a novel strategy, namely knowledge-guided multi-scale independent component analysis (ICA), to first infer regulatory signals and then identify biologically relevant biomarkers from microarray data.</p> <p>Results</p> <p>Since gene expression levels reflect the joint effect of several underlying biological functions, disease-specific biomarkers may be involved in several distinct biological functions. To identify disease-specific biomarkers that provide unique mechanistic insights, a meta-data "knowledge gene pool" (KGP) is first constructed from multiple data sources to provide important information on the likely functions (such as gene ontology information) and regulatory events (such as promoter responsive elements) associated with potential genes of interest. The gene expression and biological meta data associated with the members of the KGP can then be used to guide subsequent analysis. ICA is then applied to multi-scale gene clusters to reveal regulatory modes reflecting the underlying biological mechanisms. Finally disease-specific biomarkers are extracted by their weighted connectivity scores associated with the extracted regulatory modes. A statistical significance test is used to evaluate the significance of transcription factor enrichment for the extracted gene set based on motif information. We applied the proposed method to yeast cell cycle microarray data and Rsf-1-induced ovarian cancer microarray data. The results show that our knowledge-guided ICA approach can extract biologically meaningful regulatory modes and outperform several baseline methods for biomarker identification.</p> <p>Conclusion</p> <p>We have proposed a novel method, namely knowledge-guided multi-scale ICA, to identify disease-specific biomarkers. The goal is to infer knowledge-relevant regulatory signals and then identify corresponding biomarkers through a multi-scale strategy. The approach has been successfully applied to two expression profiling experiments to demonstrate its improved performance in extracting biologically meaningful and disease-related biomarkers. More importantly, the proposed approach shows promising results to infer novel biomarkers for ovarian cancer and extend current knowledge.</p
    corecore