1,438 research outputs found

    Identification of Piecewise Linear Models of Complex Dynamical Systems

    Full text link
    The paper addresses the realization and identification problem or a subclass of piecewise-affine hybrid systems. The paper provides necessary and sufficient conditions for existence of a realization, a characterization of minimality, and an identification algorithm for this subclass of hybrid systems. The considered system class and the identification problem are motivated by applications in systems biology

    Realization Theory for LPV State-Space Representations with Affine Dependence

    Get PDF
    In this paper we present a Kalman-style realization theory for linear parameter-varying state-space representations whose matrices depend on the scheduling variables in an affine way (abbreviated as LPV-SSA representations). We deal both with the discrete-time and the continuous-time cases. We show that such a LPV-SSA representation is a minimal (in the sense of having the least number of state-variables) representation of its input-output function, if and only if it is observable and span-reachable. We show that any two minimal LPV-SSA representations of the same input-output function are related by a linear isomorphism, and the isomorphism does not depend on the scheduling variable.We show that an input-output function can be represented by a LPV-SSA representation if and only if the Hankel-matrix of the input-output function has a finite rank. In fact, the rank of the Hankel-matrix gives the dimension of a minimal LPV-SSA representation. Moreover, we can formulate a counterpart of partial realization theory for LPV-SSA representation and prove correctness of the Kalman-Ho algorithm. These results thus represent the basis of systems theory for LPV-SSA representation.Comment: The main difference with respect to the previous version is as follows: typos have been fixe

    Switching Control for Parameter Identifiability of Uncertain Systems

    Full text link
    This paper considers the problem of identifying the parameters of an uncertain linear system by means of feedback control. The problem is approached by considering time-varying controllers. It is shown that even when the uncertainty set is not finite, parameter identifiability can be generically ensured by switching among a finite number of linear time-invariant controllers. The results are shown to have several implications, ranging from fault detection and isolation to adaptive and supervisory control. Practical aspects of the problem are also discussed in details

    Optimal Precoders for Tracking the AoD and AoA of a mm-Wave Path

    Get PDF
    In millimeter-wave channels, most of the received energy is carried by a few paths. Traditional precoders sweep the angle-of-departure (AoD) and angle-of-arrival (AoA) space with directional precoders to identify directions with largest power. Such precoders are heuristic and lead to sub-optimal AoD/AoA estimation. We derive optimal precoders, minimizing the Cram\'{e}r-Rao bound (CRB) of the AoD/AoA, assuming a fully digital architecture at the transmitter and spatial filtering of a single path. The precoders are found by solving a suitable convex optimization problem. We demonstrate that the accuracy can be improved by at least a factor of two over traditional precoders, and show that there is an optimal number of distinct precoders beyond which the CRB does not improve.Comment: Resubmission to IEEE Trans. on Signal Processing. 12 pages and 9 figure
    corecore