2,533 research outputs found

    Universal neural field computation

    Full text link
    Turing machines and G\"odel numbers are important pillars of the theory of computation. Thus, any computational architecture needs to show how it could relate to Turing machines and how stable implementations of Turing computation are possible. In this chapter, we implement universal Turing computation in a neural field environment. To this end, we employ the canonical symbologram representation of a Turing machine obtained from a G\"odel encoding of its symbolic repertoire and generalized shifts. The resulting nonlinear dynamical automaton (NDA) is a piecewise affine-linear map acting on the unit square that is partitioned into rectangular domains. Instead of looking at point dynamics in phase space, we then consider functional dynamics of probability distributions functions (p.d.f.s) over phase space. This is generally described by a Frobenius-Perron integral transformation that can be regarded as a neural field equation over the unit square as feature space of a dynamic field theory (DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with rectangular support are mapped onto uniform p.d.f.s with rectangular support, again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with arXiv:1204.546

    Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    Get PDF
    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature and detailed structure can affect the excitation process of various stellar pulsation modes, and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, and its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection, and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (2013), and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. (2013) prescription in the Toulouse-Geneva Evolution code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Th\'eado et al. (2009), that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases ultimately triggers dynamical convection.Comment: 38 pages, 16 figures, submitted to Ap

    The Formation and Coarsening of the Concertina Pattern

    Full text link
    The concertina is a magnetization pattern in elongated thin-film elements of a soft material. It is a ubiquitous domain pattern that occurs in the process of magnetization reversal in direction of the long axis of the small element. Van den Berg argued that this pattern grows out of the flux closure domains as the external field is reduced. Based on experimental observations and theory, we argue that in sufficiently elongated thin-film elements, the concertina pattern rather bifurcates from an oscillatory buckling mode. Using a reduced model derived by asymptotic analysis and investigated by numerical simulation, we quantitatively predict the average period of the concertina pattern and qualitatively predict its hysteresis. In particular, we argue that the experimentally observed coarsening of the concertina pattern is due to secondary bifurcations related to an Eckhaus instability. We also link the concertina pattern to the magnetization ripple and discuss the effect of a weak (crystalline or induced) anisotropy

    Threshold Curve for the Excitability of Bidimensional Spiking Neurons

    Get PDF
    International audienceWe shed light on the threshold for spike initiation in two-dimensional neuron models. A threshold criterion that depends on both the membrane voltage and the recovery variable is proposed. This approach provides a simple and unified framework that accounts for numerous voltage threshold properties including adaptation, variability and time-dependent dynamics. In addition, neural features such as accommodation, inhibition-induced spike, and post-inhibitory (-excitatory) facilitation are the direct consequences of the existence of a threshold curve. Implications for neural modeling are also discussed

    Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow

    Full text link
    We experimentally assess the capabilities of an active, open-loop technique for drag reduction in turbulent wall flows recently introduced by Quadrio et al. [J. Fluid Mech., v.627, 161, (2009)]. The technique consists in generating streamwise-modulated waves of spanwise velocity at the wall, that travel in the streamwise direction. A proof-of-principle experiment has been devised to measure the reduction of turbulent friction in a pipe flow, in which the wall is subdivided into thin slabs that rotate independently in the azimuthal direction. Different speeds of nearby slabs provide, although in a discrete setting, the desired streamwise variation of transverse velocity. Our experiment confirms the available DNS results, and in particular demonstrates the possibility of achieving large reductions of friction in the turbulent regime. Reductions up to 33% are obtained for slowly forward-traveling waves; backward-traveling waves invariably yield drag reduction, whereas a substantial drop of drag reduction occurs for waves traveling forward with a phase speed comparable to the convection speed of near-wall turbulent structures. A Fourier analysis is employed to show that the first harmonics introduced by the discrete spatial waveform that approximates the sinusoidal wave are responsible for significant effects that are indeed observed in the experimental measurements. Practical issues related to the physical implementation of this control scheme and its energetic efficiency are briefly discussed.Comment: Article accepted by Phys. Fluids. After it is published, it will be found at http://pof.aip.or
    • …
    corecore