17 research outputs found

    An Information Minimization Based Contrastive Learning Model for Unsupervised Sentence Embeddings Learning

    Full text link
    Unsupervised sentence embeddings learning has been recently dominated by contrastive learning methods (e.g., SimCSE), which keep positive pairs similar and push negative pairs apart. The contrast operation aims to keep as much information as possible by maximizing the mutual information between positive instances, which leads to redundant information in sentence embedding. To address this problem, we present an information minimization based contrastive learning (InforMin-CL) model to retain the useful information and discard the redundant information by maximizing the mutual information and minimizing the information entropy between positive instances meanwhile for unsupervised sentence representation learning. Specifically, we find that information minimization can be achieved by simple contrast and reconstruction objectives. The reconstruction operation reconstitutes the positive instance via the other positive instance to minimize the information entropy between positive instances. We evaluate our model on fourteen downstream tasks, including both supervised and unsupervised (semantic textual similarity) tasks. Extensive experimental results show that our InforMin-CL obtains a state-of-the-art performance.Comment: 11 pages, 3 figures, published to COLING 202

    Generating Efficient Training Data via LLM-based Attribute Manipulation

    Full text link
    In this paper, we propose a novel method, Chain-of-Thoughts Attribute Manipulation (CoTAM), to guide few-shot learning by carefully crafted data from Large Language Models (LLMs). The main idea is to create data with changes only in the attribute targeted by the task. Inspired by facial attribute manipulation, our approach generates label-switched data by leveraging LLMs to manipulate task-specific attributes and reconstruct new sentences in a controlled manner. Instead of conventional latent representation controlling, we implement chain-of-thoughts decomposition and reconstruction to adapt the procedure to LLMs. Extensive results on text classification and other tasks verify the advantage of CoTAM over other LLM-based text generation methods with the same number of training examples. Analysis visualizes the attribute manipulation effectiveness of CoTAM and presents the potential of LLM-guided learning with even less supervision

    Transformers with Learnable Activation Functions

    Get PDF
    Activation functions can have a significant impact on reducing the topological complexity of input data and therefore improve the performance of the model. Selecting a suitable activation function is an essential step in neural model design. However, the choice of activation function is seldom discussed or explored in Transformer-based language models. Their activation functions are chosen beforehand and then remain fixed from pre-training to fine-tuning. As a result, the inductive biases they imposed on models cannot be adjusted during this long life cycle. Moreover, subsequently developed models (e.g., RoBERTa, BART, and GPT-3) often follow up prior work (e.g., BERT) to use the same activation function without justification. In this paper, we investigate the effectiveness of using Rational Activation Function (RAF), a learnable activation function, in the Transformer architecture. In contrast to conventional, predefined activation functions, RAFs can adaptively learn optimal activation functions during training according to input data. Our experiments show the RAF-based Transformer (RAFT) achieves a lower validation perplexity than a vanilla BERT with the GELU function. We further evaluate RAFT on downstream tasks in low- and full-data settings. Our results show that RAFT outperforms the counterpart model across the majority of tasks and settings. For instance, RAFT outperforms vanilla BERT on the GLUE benchmark by 5.71 points on average in low-data scenario (where 100 training examples are available) and by 2.05 points on SQuAD in full-data setting. Analysis of the shapes of learned RAFs further unveils that they substantially vary between different layers of the pre-trained model and mostly look very different from conventional activation functions. RAFT opens a new research direction for analyzing and interpreting pre-trained models according to the learned activation functions.Comment: Accepted by EACL2023 finding

    Narrowing the Gap between Supervised and Unsupervised Sentence Representation Learning with Large Language Model

    Full text link
    Sentence Representation Learning (SRL) is a fundamental task in Natural Language Processing (NLP), with Contrastive learning of Sentence Embeddings (CSE) as the mainstream technique due to its superior performance. An intriguing phenomenon in CSE is the significant performance gap between supervised and unsupervised methods, even when their sentence encoder and loss function are the same. Previous works attribute this performance gap to differences in two representation properties (alignment and uniformity). However, alignment and uniformity only measure the results, which means they cannot answer "What happens during the training process that leads to the performance gap?" and "How can the performance gap be narrowed?". In this paper, we conduct empirical experiments to answer these "What" and "How" questions. We first answer the "What" question by thoroughly comparing the behavior of supervised and unsupervised CSE during their respective training processes. From the comparison, We observe a significant difference in fitting difficulty. Thus, we introduce a metric, called Fitting Difficulty Increment (FDI), to measure the fitting difficulty gap between the evaluation dataset and the held-out training dataset, and use the metric to answer the "What" question. Then, based on the insights gained from the "What" question, we tackle the "How" question by increasing the fitting difficulty of the training dataset. We achieve this by leveraging the In-Context Learning (ICL) capability of the Large Language Model (LLM) to generate data that simulates complex patterns. By utilizing the hierarchical patterns in the LLM-generated data, we effectively narrow the gap between supervised and unsupervised CSE.Comment: work in progres

    Mirror: A Universal Framework for Various Information Extraction Tasks

    Full text link
    Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at https://github.com/Spico197/Mirror .Comment: Accepted to EMNLP23 main conferenc
    corecore