3 research outputs found

    Efficient Spatio-Temporal Edge Descriptor

    Full text link

    Interactive video retrieval using implicit user feedback.

    Get PDF
    PhDIn the recent years, the rapid development of digital technologies and the low cost of recording media have led to a great increase in the availability of multimedia content worldwide. This availability places the demand for the development of advanced search engines. Traditionally, manual annotation of video was one of the usual practices to support retrieval. However, the vast amounts of multimedia content make such practices very expensive in terms of human effort. At the same time, the availability of low cost wearable sensors delivers a plethora of user-machine interaction data. Therefore, there is an important challenge of exploiting implicit user feedback (such as user navigation patterns and eye movements) during interactive multimedia retrieval sessions with a view to improving video search engines. In this thesis, we focus on automatically annotating video content by exploiting aggregated implicit feedback of past users expressed as click-through data and gaze movements. Towards this goal, we have conducted interactive video retrieval experiments, in order to collect click-through and eye movement data in not strictly controlled environments. First, we generate semantic relations between the multimedia items by proposing a graph representation of aggregated past interaction data and exploit them to generate recommendations, as well as to improve content-based search. Then, we investigate the role of user gaze movements in interactive video retrieval and propose a methodology for inferring user interest by employing support vector machines and gaze movement-based features. Finally, we propose an automatic video annotation framework, which combines query clustering into topics by constructing gaze movement-driven random forests and temporally enhanced dominant sets, as well as video shot classification for predicting the relevance of viewed items with respect to a topic. The results show that exploiting heterogeneous implicit feedback from past users is of added value for future users of interactive video retrieval systems

    Deliverable D1.1 State of the art and requirements analysis for hypervideo

    Get PDF
    This deliverable presents a state-of-art and requirements analysis report for hypervideo authored as part of the WP1 of the LinkedTV project. Initially, we present some use-case (viewers) scenarios in the LinkedTV project and through the analysis of the distinctive needs and demands of each scenario we point out the technical requirements from a user-side perspective. Subsequently we study methods for the automatic and semi-automatic decomposition of the audiovisual content in order to effectively support the annotation process. Considering that the multimedia content comprises of different types of information, i.e., visual, textual and audio, we report various methods for the analysis of these three different streams. Finally we present various annotation tools which could integrate the developed analysis results so as to effectively support users (video producers) in the semi-automatic linking of hypervideo content, and based on them we report on the initial progress in building the LinkedTV annotation tool. For each one of the different classes of techniques being discussed in the deliverable we present the evaluation results from the application of one such method of the literature to a dataset well-suited to the needs of the LinkedTV project, and we indicate the future technical requirements that should be addressed in order to achieve higher levels of performance (e.g., in terms of accuracy and time-efficiency), as necessary
    corecore