214,560 research outputs found
Rapid optimization of working parameters of microwave-driven multi-level qubits for minimal gate leakage
We propose an effective method to optimize the working parameters (WPs) of
microwave-driven quantum logical gates implemented with multi-level physical
qubits. We show that by treating transitions between each pair of levels
independently, intrinsic gate errors due primarily to population leakage to
undesired states can be estimated accurately from spectroscopic properties of
the qubits and minimized by choosing appropriate WPs. The validity and
efficiency of the approach are demonstrated by applying it to optimize the WPs
of two coupled rf SQUID flux qubits for controlled-NOT (CNOT) operation. The
result of this independent transition approximation (ITA) is in good agreement
with that of dynamic method (DM). Furthermore, the ratio of the speed of ITA to
that of DM scales exponentially as 2^n when the number of qubits n increases.Comment: 4pages, 3 figure
ITA 2.0: A Program for Classical and Inductive Item Tree Analysis
Item Tree Analysis (ITA) is an explorative method of data analysis which can be used to establish a hierarchical structure on a set of dichotomous items from a questionnaire or test. There are currently two different algorithms available to perform an ITA. We describe a computer program called ITA 2.0 which implements both of these algorithms. In addition we show with a concrete data set how the program can be used for the analysis of questionnaire data.
Polynomial Interrupt Timed Automata
Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where
reachability and some variants of timed model checking are decidable even in
presence of parameters. They are well suited to model and analyze real-time
operating systems. Here we extend ITA with polynomial guards and updates,
leading to the class of polynomial ITA (PolITA). We prove the decidability of
the reachability and model checking of a timed version of CTL by an adaptation
of the cylindrical decomposition method for the first-order theory of reals.
Compared to previous approaches, our procedure handles parameters and clocks in
a unified way. Moreover, we show that PolITA are incomparable with stopwatch
automata. Finally additional features are introduced while preserving
decidability
Minimum Conditional Description Length Estimation for Markov Random Fields
In this paper we discuss a method, which we call Minimum Conditional
Description Length (MCDL), for estimating the parameters of a subset of sites
within a Markov random field. We assume that the edges are known for the entire
graph . Then, for a subset , we estimate the parameters
for nodes and edges in as well as for edges incident to a node in , by
finding the exponential parameter for that subset that yields the best
compression conditioned on the values on the boundary . Our
estimate is derived from a temporally stationary sequence of observations on
the set . We discuss how this method can also be applied to estimate a
spatially invariant parameter from a single configuration, and in so doing,
derive the Maximum Pseudo-Likelihood (MPL) estimate.Comment: Information Theory and Applications (ITA) workshop, February 201
Properties of an Aloha-like stability region
A well-known inner bound on the stability region of the finite-user slotted
Aloha protocol is the set of all arrival rates for which there exists some
choice of the contention probabilities such that the associated worst-case
service rate for each user exceeds the user's arrival rate, denoted .
Although testing membership in of a given arrival rate can be posed
as a convex program, it is nonetheless of interest to understand the properties
of this set. In this paper we develop new results of this nature, including
an equivalence between membership in and the existence of a
positive root of a given polynomial, a method to construct a vector of
contention probabilities to stabilize any stabilizable arrival rate vector,
the volume of , explicit polyhedral, spherical, and
ellipsoid inner and outer bounds on , and characterization of the
generalized convexity properties of a natural ``excess rate'' function
associated with , including the convexity of the set of contention
probabilities that stabilize a given arrival rate vector.Comment: 28 pages, 9 figures. Submitted August 15, 2014, revised September 21,
2015 and August 31, 2016, and accepted November 06, 2016 for publication in
IEEE Transactions on Information Theory. Preliminary results presented at
ISIT 2010, ITA 2010, and ITA 2011. DOI: 10.1109/TIT.2016.2640302. Copyright
transferred to IEEE. This is last version uploaded by the authors prior to
IEEE proofing proces
Calculation of the interventilatory threshold area: a method for examining the aerobic-anaerobic transition
El objetivo fue determinar la relación entre el área interumbrales (ITA) [la zona comprendida entre el primer y el segundo umbral ventilatorio (VT1 y VT2) en la función VO2/VE, Carga/VO2 y Carga/VE] y las variables ergoespirométricas. Treinta y tres hombres realizaron un test incremental. El ITA se calculó: 1) como la integral definida por el área entre VT1 y VT2 bajo las curvas de VO2/VE, Carga/VO2 y Carga/VE y 2) como la suma de las áreas descritas por el triángulo y rectángulo entre los mismos puntos. El ITA para la función Carga/VE se correlacionó positivamente (p<0,01) con la carga en VT2 (r = 0,831) y la ventilación en VT2 (r = 0,799). El ITA para la función VO2/VE fue significativamente mayor en los ciclistas que en los estudiantes. La determinación del ITA es un método simple para evaluar la transición aeróbica-anaeróbica durante las pruebas de esfuerzo incremental.The aim was to determine the relationship between the interthreshold area (ITA) [the area between the first and second ventilatory threshold (VT1 and VT2) for the function VO2/VE, load/VO2 and load/VE] and the traditional variables measured. Thirty-three men underwent an incremental test. The ITA was calculated: 1) as the integral defined by the area between VT1 and VT2 under the curves for the functions VO2/VE, load/VO2 and load/VE and 2) as the simple sum of the areas described by the triangle and rectangle between the same points. The mean ITA for the function load/VE was positively correlated (p<0.01) with load at VT2 (r=0.831) and ventilation at VT2 (r=0.799). The mean ITA for the function VO2/VE was significantly greater in the cyclists than in the students. The ITA for the function load/VE differed between March and July as training progressed. The determination of the ITA is a simple method of assessing the aerobic-anaerobic transition process during incremental exercise tests
ITA 2.0: A Program for Classical and Inductive Item Tree Analysis
Item Tree Analysis (ITA) is an explorative method of data analysis which can be used to establish a hierarchical structure on a set of dichotomous items from a questionnaire or test. There are currently two different algorithms available to perform an ITA. We describe a computer program called ITA 2.0 which implements both of these algorithms. In addition we show with a concrete data set how the program can be used for the analysis of questionnaire data
- …
