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Abstract

Item Tree Analysis (ITA) is an explorative method of data analysis which can be used
to establish a hierarchical structure on a set of dichotomous items from a questionnaire
or test. There are currently two different algorithms available to perform an ITA. We
describe a computer program called ITA 2.0 which implements both of these algorithms.
In addition we show with a concrete data set how the program can be used for the analysis
of questionnaire data.
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1. Introduction

Item tree analysis (ITA) is a data analytical method which allows constructing a hierarchical
structure on the items of a questionnaire or test from observed response patterns. Assume
that we have a questionnaire I with m items and that subjects can answer positive (1) or
negative (0) to each of these items, i.e. the items are dichotomous. If n subjects answer the
items in I this results in a binary data matrix D with m columns and n rows.

Typical examples of this data format are test items which can be solved (1) or failed (0) by
subjects. Other typical examples are questionnaires where the items are statements to which
subjects can agree (1) or disagree (0).

Depending on the content of the items it is possible that the response of a subject to an item
j determines her or his responses to other items. It is, for example, possible that each subject
who agrees to item j will also agree to item 7. In this case we say that item j implies item
7 and write shortly ¢ < j. The goal of an ITA is to uncover such deterministic implications
from the data set D.

ITA was originally developed by Van Leeuwe (1974). The result of his algorithm, which we
refer in the following as Classical ITA, is a logically consistent set of implications ¢ < j.
Logically consistent means that ¢ < j and j < k implies ¢ < k for each triple 4,7,k of items, i.e.



https://core.ac.uk/display/6305127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 ITA 2.0: Classical and Inductive Item Tree Analysis

the relation < is transitive. Thus the outcome of an ITA is a reflexive and transitive relation
on the item set, i.e. a quasi-order on the items.

Recently Schrepp (1999) developed a different algorithm to perform an ITA, which we refer in
the following as Inductive ITA. Classical ITA and inductive ITA both construct a quasi-order
on the item set by explorative data analysis. But both methods use a different algorithm to
construct this quasi-order. For a given data set the resulting quasi-orders from classical and
inductive ITA will usually differ.

ITA belongs to a group of data analysis methods called Boolean analysis of questionnaires.
Boolean analysis was introduced by Flament (1976). The goal of a Boolean analysis is to
detect deterministic dependencies (formulas from Boolean logic connecting the items, like for
example i — j, i A j — k, and i V j — k) between the items of a questionnaire or test.

Since the basic work of Flament (1976) a number of different methods for boolean analysis
have been developed. See, for example, van Van Buggenhaut and Degreef (1987), Duquenne
(1987), Theuns (1994) or Theuns (1998).

These methods share the goal to derive deterministic dependencies between the items of a
questionnaire from data, but differ in the algorithms to reach this goal. A comparison of ITA
to other methods of boolean data analysis can be found in Schrepp (2003).

Boolean analysis is closely related to the GUHA method (H4jek, Havel, and Chytil (1966)
or Héjek and Havrének (1977)). The basic idea of this method is to use formal logic to
generate all hypotheses which are of interest in a given research task and supported by the
data. Statistical methods are used to evaluate these generated hypotheses. There is also a
close connection of boolean analysis to data mining techniques, especially the extraction of
association rules from data. See, for example, Klemettinen, Mannila, Ronkainen, Toivonen,
and Verkamo (1994) or Toivonen (1996).

There is a close connection between item tree analysis and knowledge space theory. The
theory of knowledge spaces (Doignon and Falmagne (1985), Doignon and Falmagne (1998)
or Albert and Lukas (1999)) provides a theoretical framework for the formal description of
human knowledge. A knowledge domain is in this approach represented by a set I of problems.
The knowledge of a subject in the domain is then described by the subset of problems from
I he or she is able to solve. This set is called the knowledge state of the subject. Because of
dependencies between the items (for example, if solving problem j implies solving problem 7)
not all elements of the power set of I will, in general, be possible knowledge states. The set of
all possible knowledge states is called the knowledge structure. Obviously, item tree analysis
can be used to construct a knowledge structure from data. See, for example, Schrepp (1999).

The investigation of deterministic dependencies has some tradition in educational psychology.
The items represent in this area usually skills or cognitive abilities of subjects. Bart and
Airasian (1974) use ITA to establish implications on a set of Piagetian tasks. Other examples
in this tradition are the learning hierarchies of Gagné (1968) or the theory of structural
learning of Scandura (1991).

A recent application of classical ITA on educational test items can be found in Held and
Korossy (1998) who extracted logical implications on a set of mathematical problems from
observed response patterns. The extracted implications are then compared to implications
obtained by querying an expert.

Another example for the use of deterministic dependencies in psychology are approaches to
formalize the diagnostic process of psychologists. The goal of this approach is to uncover the
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rules on which the decisions of diagnosticians are based. See, for example, Hirtner, Mattes,
and Wottawa (1980) or Wottawa and Echterhoff (1982).

An example for the application of ITA to sociological data is Bart and Krus (1973) who used
an ITA related procedure to establish a hierarchical order on items that describe socially
unaccepted behavior. Janssens (1999) used a method of boolean analysis to investigate the
integration process of minorities into the value system of the dominant culture. Applications
of inductive ITA on the analysis of questionnaire data can be found in Schrepp (2002) or
Schrepp (2003). In these papers subsets of questions from the International Social Science
Survey Program (ISSSP) are analyzed by inductive ITA.

2. Algorithms of classical and inductive ITA

The main purpose of this paper is to describe the program ITA 2.0. But for an understanding
of the program it is important to give a rough description of the implemented algorithms. For
a more detailed introduction into this algorithms please refer for classical ITA to Van Leeuwe
(1974) and for inductive ITA to Schrepp (2003).

Let us first define some basic notational conventions which are necessary for both algorithms:

e [ is a set of m dichotomous items.

e < is a quasi-order (reflexive and transitive relation) on I. Such a quasi-order on I can
be represented as a set {(i,7) | i < j} of item pairs.

e D ={dy,...,d,} is a set of n observed response patterns to the items in I. Each d; is
a mapping ds : I — {0,1} which assigns to each item ¢ the response ds(i) € {0,1} of
subject s.

e p; is the relative frequency of subjects who answer positive (1) to item 4, i.e.
pi =[{ds € D | ds(i) =1} | /n
e b;; is the number of response patterns which violate the dependency i < j, i.e.

bij :’ {ds €D ’ ds(z) = OAds(j) = 1} ‘

e For a quasi-order < on I the set of all consistent patterns Cons(<) is given by
Cons(<)={r: I —{0,1} |Vi,jeI(i<jAr()=1=r@l)=1)}

Thus, Cons(<) contains all 0-1-patterns of length m which are consistent with all the
dependencies ¢ < j in the quasi-order <.

e Define for d € D, k € Cons(<) the distance
dist(d, k) =| {i € T | d(i) # k()} |
between d and k. Let

mdist(d, Cons(<)) = min{dist(d, k) | k € Cons(<)}



4 ITA 2.0: Classical and Inductive Item Tree Analysis

be the minimal distance of d to a consistent 0-1-pattern. Then the reproducibility
coefficient Repro(<, D) is defined by:

> aqep mdist(d, Cons(<))

Repro(<,D) =1 —
mn

The reproducibility coefficient can be interpreted as the percentage of cells in the data
matrix which can be reproduced by the quasi-order <.

2.1. The algorithm of classical ITA

To describe the algorithm of classical ITA we need in addition to the definitions given above
the following conventions:

e 7;; is the Pearson-Correlation of items ¢ and j.
e ((<, D) is the number of response patterns which are not consistent with <, i.e.
C(<,D)=|{ds € D | ds ¢ Cons(<)} |
e The partial order reproducibility coefficient REP-PO(<, D) is defined by
REP-PO(L,D)=1—(C(<,D)/n)
e The expected correlation rj; under the assumption that < is the correct quasi-order

underlying the data (see Van Leeuwe (1974) for a description on how r; is derived from
this assumption) is defined by:

1 ifi<jng<i
I RV O e ) R R RV S
Y A —pp/(—ppy i LG AG <

0 otherwise

e The correlational agreement coefficient CA(<, D) is now defined by:

Y (rig—r5)?

1<j

2

CA(S,D) = 1= 5y

The algorithm of ITA consists accordingly to Van Leeuwe (1974) of the following 5 steps:

1. A limit 7 for REP-PO(<, D) is defined. 7 is interpreted as the lowest acceptable
REP-PO(<, D) value for the best-fitting quasi-order < resulting from the analysis.

2. Aset PQO(D) = {<p| L =1,...,n} of relations on I is constructed where <y, is defined
by i <r j < b < L for all i,j € I. Van Leeuwe (1974) showed that <g is transitive
but that this must not be the case for relations <j with L > 0.

3. All relations <;, with REP-PO(<r, D) < 7 are eliminated from PQO(D).
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4. All intransitive relations <y, are eliminated from PQO(D).

5. For all remaining relations in PQO(D) the CA(<y, D)-value is computed. Note that
PQO(D) can not be empty, since <y is transitive and we have REP-PO(<y, D) = 1. The
relation with the highest CA(<p, D)-value is the best-fitting quasi-order accordingly to
classical ITA.

Currently there is a debate concerning the use of CA(<y, D) as a valid selection criterion
between different quasi-orders. Unlii and Albert (2004) list a number of properties of the
coefficient CA(<r, D) which show in their opinion that CA(<r, D) should not be used for
that purpose.

In a direct reply to this paper Schrepp (2006) showed that the critique raised by Unlii and
Albert (2004) is not justified. In fact this paper shows that some of the problems of CA(<r, D)
described by Unlii and Albert (2004) are properties which a good measure of fit for a quasi-
order should have.

Classical ITA can be generalized to the case that some subjects have not answered all items
(missing data). This is done simply by ignoring such rows in the calculation of the values r;;
and 77;.

2.2. The algorithm of inductive ITA

Inductive ITA is a two step procedure. In the first step a set of quasi-orders is constructed
inductively on I. In the second step a best-fitting quasi-order is chosen from this set.

Step 1: Inductive construction of a set of quasi-orders

We start with the quasi-order <¢ defined by ¢ <¢ j < b;; = 0 for all 4, j € I. Assume that we
have constructed a quasi-order <. In step L + 1 of the process we construct a quasi-order
<r+1 by adding all item pairs (7, j) to <, for which the following two conditions hold:
° bij <L-+1
e i <;11 j does not cause an intransitivity to other dependencies which are already
contained in <; or added in this step to <.

The algorithm to construct <r; from <y, consists of three sub-steps.

1. Define AL—H = {(Z,j) ’ bij < L+1A1 ﬁL j}
2. The following steps are repeated until the stopping criterion is valid:
e Elements of Ay, which cause intransitivity to elements in <; U Ap.1 are added
to a set Bry1. If no such elements exists in A1 the process stops.

e All elements of By are removed from Apy.

e All elements are removed from Br,1 and we proceed with the first step. When
this process ends none of the remaining elements in Ay 1 causes an intransitivity
with other elements in < UAr;.

3. We define <p11 =<5 UAr+1. The relation <j, is by construction transitive.
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This construction method results in a set IPQO(D) = {<.| L =0,1,2,...,n} of quasi-orders
with <p C <1C <o C ... C€<,. Note that some of these quasi-orders may be identical. If, for
example, Ay =0, then <p=<r4;.

Step 2: Determine the best fitting quasi-order

Assume that <y is the correct quasi-order underlying the data set D. A violation of i <p, j
is then only possible by the influence of random errors. We estimate the probability v that a
true dependency ¢ <y, j is violated due to random errors by:

= 2/ n) [isejni )

(I<cl —m)

We distinguish two cases to calculate the expected number of violations ¢;; to i <, j:

1. 7 £, 7: In this case we assume that the items ¢ and j are independent. Thus, t;; equals
the expected number of response patterns d with d(i) = 0 and d(j) = 1, so we have

tij=(1—pi) pjn (1—-7).

2. 1 <r j and i # j: In this case all violations to ¢ <7, j must result from random errors.
Thus, t;; = v pj n.

The fit between <;, and the data set D is measured by the diff(<r, D) coefficient:

)2
diff(<y, D) = Z’(Zfsj_ mt)”)

To determine the optimal tolerance level L we calculate the diff(<r, D) value for all quasi-
orders <z, in IPQO(D) and chose the quasi-order for which this value is minimal as best-fitting
quasi-order accordingly to inductive ITA.

Again this algorithm can easily be extended to the case of missing data in some response
patterns. Response patterns where one of the items ¢ or j is not answered by the subject are
ignored for the calculation of the b;; values and in the calculation of the error parameter +.
The rest of the algorithm stays more or less the same. For an exact mathematical description
of the generalized algorithm see Schrepp (2003).

3. The analysis program ITA 2.0

ITA 2.0' is a Windows based program which allows analysing a binary data set D by classical
or inductive ITA. The program was tested under Windows XP and Windows 2000, but should
also run on other Windows versions. It has a simple user interface (see Figure 1) which allows
the user to set the available options for the analysis.

The data are read from the ASCII file specified in the field Input file. Currently two input
formats (Patterns with frequencies, List of Patterns) are supported.

ITA 2.0 is the successor of ITA 1.0 which was a simple DOS program to perform an inductive ITA. This
version is available under http://www.mpr-online.de/issuel9/. The main progress in ITA 2.0 is that it
implements both methods of ITA, has a graphical user interface and supports HTML output, especially a
graphical representation of the constructed best-fitting quasi-order.
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Bmmazo _inix]

A program for Classical and Inductive ltem Tree Analysis

Input file |C:\Data'l.ExampIe_data1 | | e |
Input format IList of Patterns j
Result file |Flf:5u|t.hlm|| |
Result format IHTML j
Analysis Method IIndut:tive ITA j

Output Options:

I¥ Calculate the consistent patterns for the bestHitting quasi-order

¥ Display results automatically after analysis finishes

Command to view text files
Command to view HTML files

Start I ‘ Cancel I

Figure 1: User interface of ITA 2.0.

The format List of Patterns assumes that the input file contains per subject one row of data
which describes the answers of the subject to the items in the item set. Each row can contain
the signs 1, 0, - (for missing data), and white space. The spaces are ignored in the input file,
thus it does not matter if the entries for two items are separated by space or not.

FEzamples:
101019 1010 19
-11019 -11019
-00-19 -00 - 19
101119 101119
001009 01009

The format Patterns with frequencies assumes that the input file contains for each observed
response pattern a string which describes the response pattern and in addition the frequency
of the response pattern in the data. Both parts of the row must be separated by a space.
Inside the part of the row which describes the response pattern only the signs 1, 0, - (for
missing data) are allowed.
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Example:
10101 59
01-01 129
1-0-1 189
10111 29
00100 79

In both data formats the number of the items must not be specified explicitly. This number
is determined from the first row of the input file. The number of items is restricted to
a maximum of 30 and the number of response patterns in the data file is restricted to a
maximum of 10000. Please make sure that each row of the data file ends with a new line (9)!

The result of the analysis is written to a file (enter the name of the file into the field Result
file) which can be a simple ASCII file (choose Result format Text) or an HTML file (choose
Result format HTML).

Both formats contain the same information. The only exception is that the HTML file contains
also a graphical visualization of the best fitting quasi-order as a Hasse-Diagram. This Hasse-
Diagram is displayed in a Java-Applet inside the HTML file. For drawing this Hasse-Diagram
the program uses the Interactive Poset and Lattice Drawing Java Applet from Peter Jipsen
(freely available under http://math.vanderbilt.edu/ pjipsen/gap/posets.html).

3.1. Result file for classical ITA

The header of the result file contains some descriptive data, like for example the number of
items in the data file.

e Distribution of values per column: This table provides an overview about the distribu-
tion of the values 0, 1, and - in each of the columns of the data matrix.

e Table of the a;j: The value a;; is the number of rows in the data matrix which contain
a 0 in column j and a 0 in column .

e Table of the b;j: The value b;; is the number of rows in the data matrix which contain
a 1 in column j and a 0 in column .

e Table of the c;j: The value ¢;; is the number of rows in the data matrix which contain
a 0 in column j and a 1 in column .

e Table of the d;;: The value d;; is the number of rows in the data matrix which contain
a 1 in column j and a 1 in column .

e Empirical correlations r;j: This table contains the Pearson-Correlations of all item pairs.

e (A walues: For each constructed relation <j; the number of non-reflexive implications
in <z, and the fit indices CA(<p, D) and REP-PO(<r, D) are listed. The relatively
best-fitting relation <y, is the transitive relation which shows the maximal CA-value.
Since the constructed relations <y are not always transitive the information about the
transitivity of the relation is displayed in the last column.
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o Constructed quasi-order for level x: This table lists all non-reflexive implications from
the best fitting quasi-order. Together with each implication the the b;;-value of the
implication is listed.

e Fit indices: The mean violation of an implication (mean over all b;j-values for all i < j
in the best-fitting quasi-order <), reproducibility coefficient, correlational agreement
coefficient, and the REP-PO value of the best fitting quasi-order are listed.

e Compatible states: This is the list of consistent patterns Cons(<) for the best-fitting
quasi-order <.

In the HTML format in addition to this information the best-fitting quasi-order is displayed
as a Hasse-Diagram.

3.2. Result file for inductive ITA

The header of the result file contains some descriptive data, like for example the number of
items in the data file.

o Distribution of values per column: This table provides an overview about the distribu-
tion of the values 0, 1, and - in each of the columns of the data matrix.

e Table of the b;;: The observed b;j-values.

e Quasi-orders (lowest level with i < j): The algorithm uses an inductive method to
construct a set {<y| L € {0,...,n}} of quasi-orders (n is the number of rows in the
data matrix). This table gives an overview about these quasi-orders. An implication
1 <r, j is true, if the value in cell (7, j) of this table is < L.

e Diff-values: For each constructed quasi-order <; the number of non-reflexive implica-
tions in <7, and the fit index diff(<y, D) are listed. The relatively best fitting quasi-order
is the quasi-order which shows the minimal diff-value.

o Constructed quasi-order for level x: This table lists all non-reflexive implications from
the best fitting quasi-order. Together with each implication i < j the Support, Confi-
dence, and the b;j-value of the implication are listed. Support and confidence are often
used to evaluate the quality of an implication for prediction in data mining. They are
not used in inductive ITA, but since they are easy to compute we list them together
with the implication. Assume i < j. We define:

— ¢(i,7) = Number of rows in the data with d(j) =1 A d(i) # —
— z(i,7) = Number of rows in the data with d(j) # — A d(i) # —
— y(i,j) = Number of rows in the data with d(j) =1 A d(i) =1

Then support and confidence of the implication 7 < j are given by:

— Support(i < .7) = y(l,j)/SL‘(Z,j)
— Confidence(i < j) = y(4,7)/q(i, j)
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e Fit indices: The mean violation of an implication and the reproducibility coefficient are
listed.

In the HTML format in addition to this information the best-fitting quasi-order is displayed
as a Hasse-Diagram.

3.3. Options

The user is able to decide if the set of consistent patterns for the best-fitting quasi-order should
be computed and listed in the output file (mark the checkbox Calculate the consistent patterns
for the best-fitting quasi-order). Please use that feature carefully if your input file contains
many items! The time necessary to compute the compatible states increases exponentially
with the number of items. Thus, for higher numbers of items you must expect a considerable
time until the program finishes. Note also that the output file can be in this case quite large.

With the checkbox Display results automatically after analysis finishes you can force the
program to display the result file directly after the analysis is finished. If this checkbox is
checked then the two additional fields Command to view text files and Command to view
HTML files are visible (otherwise these files are hidden).

If you choose this option you must specify the program which should be used to display the
result files. If the output format is Tezt then you have to enter the name of an editor which is
able to display .tzt files in the field Command to view text files (simply choose notepad which
is usually available on each machine). If the output format is HTML, then you have to enter
the program name for your browser in the field Command to view HTML files (for example
iezplore for MS Internet Explorer or firefox for the Mozilla Firefox Browser).

3.4. Installation

ITA 2.0 consists of the following executables:

e IITA_UI.exe: The graphical user interface of ITA 2.0. Click on this executable to start
the program.

e Classic_ITA_UI.exe: Analysis module for classical ITA (can not be started stan-
dalone).

e Inductive_ITA_UI.exe: Analysis module for inductive ITA (can not be started stan-
dalone).

e Node.class, Poset.class, Edge.class, GraphPanel.class: These are the Java classes
for the Interactive Poset and Lattice Drawing Java Applet from Peter Jipsen, which is
used to paint the Hasse-Diagram of the best-fitting quasi-order in the HTML output.

Please make sure that these files and the two files ita_mslg and ita_settings are located
in the same directory. Otherwise the program will not work correctly. The mentioned exe-
cutables and the corresponding source files required to compile them are available together
with this article. Details concerning the installation can be found in the file README. txt.
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4. Example of an analysis by ITA

We will now give an example for the possibilities of an analysis of a data set by ITA. Therefore
we analyse the statements of question 4 of the International Social Science Survey Programme
(ISSSP) for the year 1995 by inductive and classical ITA.

The ISSSP is a continuing annual program of cross-national collaboration on surveys covering
important topics for social science research. The program conducts each year one survey with
comparable questions in each of the participating nations. The theme of the 1995 survey was
national identity. We analyze the results for question 4 for the data set of Western Germany.
The statement for question 4 was:

Some people say the following things are important for being truly German. Others say they are not
important. How important do you think each of the following is:

1. to have been born in Germany

2. to have German citizenship

3. to have lived in Germany for most of one’s life
to be able to speak German

to be a Christian

to respect Germany’s political institutions

o o

to feel German

The subjects had the response possibilities Very important, Important, Not very important,
Not important at all, and Can’t choose to answer the statements. To apply ITA to this data
set we changed the answer categories. Very importantt and Important are coded as 1. Not
very important and Not important at all are coded as 0. Can’t choose was handled as missing
data. Figure 2 shows the resulting quasi-orders <;;r4 from inductive ITA and <g;r4 from
classical ITA.

1 5 1 3 5
3
2 7
N
4,6 2 4 6 7
<ITA =cITA

Figure 2: Hasse-Diagrams of the best-fitting quasi-orders accordingly to classical and induc-
tive ITA.

11
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As we can see the quasi-order <jr74 is more restrictive than <crra. The set Cons(<rrra)
contains 9 consistent patterns while Cons(<¢rr4) contain 36 consistent patterns.

Another remarkable result is that despite the fact that <;;r4 is much stricter than <gyr4 the
reproducibility coefficients of both solutions are similar. We have Repro(<;;74, D) = 0.94 and
Repro(<crra, D) = 0.956. So the quasi-order <j;r4 still explains with 9 possible response
patterns 94% of the cells in the data matrix. Thus, the additional restrictions contained in
<rrr4 seem to be well supported by the data.
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