42 research outputs found

    Examples of minimal-memory, non-catastrophic quantum convolutional encoders

    Get PDF
    One of the most important open questions in the theory of quantum convolutional coding is to determine a minimal-memory, non-catastrophic, polynomial-depth convolutional encoder for an arbitrary quantum convolutional code. Here, we present a technique that finds quantum convolutional encoders with such desirable properties for several example quantum convolutional codes (an exposition of our technique in full generality will appear elsewhere). We first show how to encode the well-studied Forney-Grassl-Guha (FGG) code with an encoder that exploits just one memory qubit (the former Grassl-Roetteler encoder requires 15 memory qubits). We then show how our technique can find an online decoder corresponding to this encoder, and we also detail the operation of our technique on a different example of a quantum convolutional code. Finally, the reduction in memory for the FGG encoder makes it feasible to simulate the performance of a quantum turbo code employing it, and we present the results of such simulations.Comment: 5 pages, 2 figures, Accepted for the International Symposium on Information Theory 2011 (ISIT 2011), St. Petersburg, Russia; v2 has minor change

    Analog network coding in general SNR regime: Performance of a greedy scheme

    Full text link
    The problem of maximum rate achievable with analog network coding for a unicast communication over a layered relay network with directed links is considered. A relay node performing analog network coding scales and forwards the signals received at its input. Recently this problem has been considered under certain assumptions on per node scaling factor and received SNR. Previously, we established a result that allows us to characterize the optimal performance of analog network coding in network scenarios beyond those that can be analyzed using the approaches based on such assumptions. The key contribution of this work is a scheme to greedily compute a lower bound to the optimal rate achievable with analog network coding in the general layered networks. This scheme allows for exact computation of the optimal achievable rates in a wider class of layered networks than those that can be addressed using existing approaches. For the specific case of Gaussian N-relay diamond network, to the best of our knowledge, the proposed scheme provides the first exact characterization of the optimal rate achievable with analog network coding. Further, for general layered networks, our scheme allows us to compute optimal rates within a constant gap from the cut-set upper bound asymptotically in the source power.Comment: 11 pages, 5 figures. Fixed an issue with the notation in the statement and proof of Lemma 1. arXiv admin note: substantial text overlap with arXiv:1204.2150 and arXiv:1202.037

    Merging Belief Propagation and the Mean Field Approximation: A Free Energy Approach

    Get PDF
    We present a joint message passing approach that combines belief propagation and the mean field approximation. Our analysis is based on the region-based free energy approximation method proposed by Yedidia et al. We show that the message passing fixed-point equations obtained with this combination correspond to stationary points of a constrained region-based free energy approximation. Moreover, we present a convergent implementation of these message passing fixedpoint equations provided that the underlying factor graph fulfills certain technical conditions. In addition, we show how to include hard constraints in the part of the factor graph corresponding to belief propagation. Finally, we demonstrate an application of our method to iterative channel estimation and decoding in an orthogonal frequency division multiplexing (OFDM) system

    Speeding up Glauber Dynamics for Random Generation of Independent Sets

    Full text link
    The maximum independent set (MIS) problem is a well-studied combinatorial optimization problem that naturally arises in many applications, such as wireless communication, information theory and statistical mechanics. MIS problem is NP-hard, thus many results in the literature focus on fast generation of maximal independent sets of high cardinality. One possibility is to combine Gibbs sampling with coupling from the past arguments to detect convergence to the stationary regime. This results in a sampling procedure with time complexity that depends on the mixing time of the Glauber dynamics Markov chain. We propose an adaptive method for random event generation in the Glauber dynamics that considers only the events that are effective in the coupling from the past scheme, accelerating the convergence time of the Gibbs sampling algorithm

    Stabilizer codes from modified symplectic form

    Full text link
    Stabilizer codes form an important class of quantum error correcting codes which have an elegant theory, efficient error detection, and many known examples. Constructing stabilizer codes of length nn is equivalent to constructing subspaces of Fpn×Fpn\mathbb{F}_p^n \times \mathbb{F}_p^n which are "isotropic" under the symplectic bilinear form defined by ⟨(a,b),(c,d)⟩=aTd−bTc\left\langle (\mathbf{a},\mathbf{b}),(\mathbf{c},\mathbf{d}) \right\rangle = \mathbf{a}^{\mathrm{T}} \mathbf{d} - \mathbf{b}^{\mathrm{T}} \mathbf{c}. As a result, many, but not all, ideas from the theory of classical error correction can be translated to quantum error correction. One of the main theoretical contribution of this article is to study stabilizer codes starting with a different symplectic form. In this paper, we concentrate on cyclic codes. Modifying the symplectic form allows us to generalize the previous known construction for linear cyclic stabilizer codes, and in the process, circumvent some of the Galois theoretic no-go results proved there. More importantly, this tweak in the symplectic form allows us to make use of well known error correcting algorithms for cyclic codes to give efficient quantum error correcting algorithms. Cyclicity of error correcting codes is a "basis dependent" property. Our codes are no more "cyclic" when they are derived using the standard symplectic forms (if we ignore the error correcting properties like distance, all such symplectic forms can be converted to each other via a basis transformation). Hence this change of perspective is crucial from the point of view of designing efficient decoding algorithm for these family of codes. In this context, recall that for general codes, efficient decoding algorithms do not exist if some widely believed complexity theoretic assumptions are true

    Haplotype Assembly: An Information Theoretic View

    Full text link
    This paper studies the haplotype assembly problem from an information theoretic perspective. A haplotype is a sequence of nucleotide bases on a chromosome, often conveniently represented by a binary string, that differ from the bases in the corresponding positions on the other chromosome in a homologous pair. Information about the order of bases in a genome is readily inferred using short reads provided by high-throughput DNA sequencing technologies. In this paper, the recovery of the target pair of haplotype sequences using short reads is rephrased as a joint source-channel coding problem. Two messages, representing haplotypes and chromosome memberships of reads, are encoded and transmitted over a channel with erasures and errors, where the channel model reflects salient features of high-throughput sequencing. The focus of this paper is on the required number of reads for reliable haplotype reconstruction, and both the necessary and sufficient conditions are presented with order-wise optimal bounds.Comment: 30 pages, 5 figures, 1 tabel, journa
    corecore