17,415 research outputs found
On the mass of the neutron star in Cyg X-2
We present new high resolution spectroscopy of the low mass X-ray binary Cyg
X-2 which enables us to refine the orbital solution and rotational broadening
of the donor star. In contrast with Elebert et al (2009) we find a good
agreement with results reported in Casares et al. (1998). We measure
day, km s and km s. These values imply and
M (for ). Therefore, the
neutron star in Cyg X-2 can be more massive than canonical. We also find no
evidence for irradiation effects in our radial velocity curve which could
explain the discrepancy between Elebert et al's and our values.Comment: Accepted for publication in MNRA
Enhancement of synchronization in a hybrid neural circuit by spike timing dependent plasticity
Synchronization of neural activity is fundamental for many functions of the brain. We demonstrate that spike-timing dependent plasticity (STDP) enhances synchronization (entrainment) in a hybrid circuit composed of a spike generator, a dynamic clamp emulating an excitatory plastic synapse, and a chemically isolated neuron from the Aplysia abdominal ganglion. Fixed-phase entrainment of the Aplysia neuron to the spike generator is possible for a much wider range of frequency ratios and is more precise and more robust with the plastic synapse than with a nonplastic synapse of comparable strength. Further analysis in a computational model of HodgkinHuxley-type neurons reveals the mechanism behind this significant enhancement in synchronization. The experimentally observed STDP plasticity curve appears to be designed to adjust synaptic strength to a value suitable for stable entrainment of the postsynaptic neuron. One functional role of STDP might therefore be to facilitate synchronization or entrainment of nonidentical neurons
MM Algorithms for Minimizing Nonsmoothly Penalized Objective Functions
In this paper, we propose a general class of algorithms for optimizing an
extensive variety of nonsmoothly penalized objective functions that satisfy
certain regularity conditions. The proposed framework utilizes the
majorization-minimization (MM) algorithm as its core optimization engine. The
resulting algorithms rely on iterated soft-thresholding, implemented
componentwise, allowing for fast, stable updating that avoids the need for any
high-dimensional matrix inversion. We establish a local convergence theory for
this class of algorithms under weaker assumptions than previously considered in
the statistical literature. We also demonstrate the exceptional effectiveness
of new acceleration methods, originally proposed for the EM algorithm, in this
class of problems. Simulation results and a microarray data example are
provided to demonstrate the algorithm's capabilities and versatility.Comment: A revised version of this paper has been published in the Electronic
Journal of Statistic
Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons
We study associative memory neural networks of the Hodgkin-Huxley type of
spiking neurons in which multiple periodic spatio-temporal patterns of spike
timing are memorized as limit-cycle-type attractors. In encoding the
spatio-temporal patterns, we assume the spike-timing-dependent synaptic
plasticity with the asymmetric time window. Analysis for periodic solution of
retrieval state reveals that if the area of the negative part of the time
window is equivalent to the positive part, then crosstalk among encoded
patterns vanishes. Phase transition due to the loss of the stability of
periodic solution is observed when we assume fast alpha-function for direct
interaction among neurons. In order to evaluate the critical point of this
phase transition, we employ Floquet theory in which the stability problem of
the infinite number of spiking neurons interacting with alpha-function is
reduced into the eigenvalue problem with the finite size of matrix. Numerical
integration of the single-body dynamics yields the explicit value of the
matrix, which enables us to determine the critical point of the phase
transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.
Implementing fault tolerant applications using reflective object-oriented programming
Abstract: Shows how reflection and object-oriented programming can be used to ease the implementation of classical fault tolerance mechanisms in distributed applications. When the underlying runtime system does not provide fault tolerance transparently, classical approaches to implementing fault tolerance mechanisms often imply mixing functional programming with non-functional programming (e.g. error processing mechanisms). The use of reflection improves the transparency of fault tolerance mechanisms to the programmer and more generally provides a clearer separation between functional and non-functional programming. The implementations of some classical replication techniques using a reflective approach are presented in detail and illustrated by several examples, which have been prototyped on a network of Unix workstations. Lessons learnt from our experiments are drawn and future work is discussed
ISO-3D Applications of 3-Dimensional Electromagnetic Induction by Sources in the Oceans: a MAST-3 Project. Final report of ISO-3D Working Group.
A group membership algorithm with a practical specification
Presents a solvable specification and gives an algorithm for the group membership problem in asynchronous systems with crash failures. Our specification requires processes to maintain a consistent history in their sequences of views. This allows processes to order failures and recoveries in time and simplifies the programming of high level applications. Previous work has proven that the group membership problem cannot be solved in asynchronous systems with crash failures. We circumvent this impossibility result building a weaker, yet nontrivial specification. We show that our solution is an improvement upon previous attempts to solve this problem using a weaker specification. We also relate our solution to other methods and give a classification of progress properties that can be achieved under different models
- …
