17,415 research outputs found

    On the mass of the neutron star in Cyg X-2

    Full text link
    We present new high resolution spectroscopy of the low mass X-ray binary Cyg X-2 which enables us to refine the orbital solution and rotational broadening of the donor star. In contrast with Elebert et al (2009) we find a good agreement with results reported in Casares et al. (1998). We measure P=9.84450±0.00019P=9.84450\pm0.00019 day, K2=86.5±1.2K_2=86.5\pm1.2 km s1^{-1} and Vsini=33.7±0.9V \sin i=33.7\pm0.9 km s1^{-1}. These values imply q=M2/M1=0.34±0.02q=M_{2}/M_{1}=0.34 \pm 0.02 and M1=1.71±0.21M_{1}=1.71\pm 0.21 M_{\odot} (for i=62.5±4i=62.5 \pm 4^{\circ}). Therefore, the neutron star in Cyg X-2 can be more massive than canonical. We also find no evidence for irradiation effects in our radial velocity curve which could explain the discrepancy between Elebert et al's and our K2K_2 values.Comment: Accepted for publication in MNRA

    Enhancement of synchronization in a hybrid neural circuit by spike timing dependent plasticity

    Get PDF
    Synchronization of neural activity is fundamental for many functions of the brain. We demonstrate that spike-timing dependent plasticity (STDP) enhances synchronization (entrainment) in a hybrid circuit composed of a spike generator, a dynamic clamp emulating an excitatory plastic synapse, and a chemically isolated neuron from the Aplysia abdominal ganglion. Fixed-phase entrainment of the Aplysia neuron to the spike generator is possible for a much wider range of frequency ratios and is more precise and more robust with the plastic synapse than with a nonplastic synapse of comparable strength. Further analysis in a computational model of HodgkinHuxley-type neurons reveals the mechanism behind this significant enhancement in synchronization. The experimentally observed STDP plasticity curve appears to be designed to adjust synaptic strength to a value suitable for stable entrainment of the postsynaptic neuron. One functional role of STDP might therefore be to facilitate synchronization or entrainment of nonidentical neurons

    MM Algorithms for Minimizing Nonsmoothly Penalized Objective Functions

    Full text link
    In this paper, we propose a general class of algorithms for optimizing an extensive variety of nonsmoothly penalized objective functions that satisfy certain regularity conditions. The proposed framework utilizes the majorization-minimization (MM) algorithm as its core optimization engine. The resulting algorithms rely on iterated soft-thresholding, implemented componentwise, allowing for fast, stable updating that avoids the need for any high-dimensional matrix inversion. We establish a local convergence theory for this class of algorithms under weaker assumptions than previously considered in the statistical literature. We also demonstrate the exceptional effectiveness of new acceleration methods, originally proposed for the EM algorithm, in this class of problems. Simulation results and a microarray data example are provided to demonstrate the algorithm's capabilities and versatility.Comment: A revised version of this paper has been published in the Electronic Journal of Statistic

    Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    Full text link
    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatio-temporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatio-temporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast alpha-function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with alpha-function is reduced into the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.

    Implementing fault tolerant applications using reflective object-oriented programming

    Get PDF
    Abstract: Shows how reflection and object-oriented programming can be used to ease the implementation of classical fault tolerance mechanisms in distributed applications. When the underlying runtime system does not provide fault tolerance transparently, classical approaches to implementing fault tolerance mechanisms often imply mixing functional programming with non-functional programming (e.g. error processing mechanisms). The use of reflection improves the transparency of fault tolerance mechanisms to the programmer and more generally provides a clearer separation between functional and non-functional programming. The implementations of some classical replication techniques using a reflective approach are presented in detail and illustrated by several examples, which have been prototyped on a network of Unix workstations. Lessons learnt from our experiments are drawn and future work is discussed

    A group membership algorithm with a practical specification

    Get PDF
    Presents a solvable specification and gives an algorithm for the group membership problem in asynchronous systems with crash failures. Our specification requires processes to maintain a consistent history in their sequences of views. This allows processes to order failures and recoveries in time and simplifies the programming of high level applications. Previous work has proven that the group membership problem cannot be solved in asynchronous systems with crash failures. We circumvent this impossibility result building a weaker, yet nontrivial specification. We show that our solution is an improvement upon previous attempts to solve this problem using a weaker specification. We also relate our solution to other methods and give a classification of progress properties that can be achieved under different models
    corecore