7 research outputs found

    Design of a miniaturized work-cell for micro-manipulation

    Get PDF
    The paper describes the design and development of a miniaturised workcell devoted to the robotized micro manipulation and assembly of extremely small components, jointly carried out by the University of Brescia, University of Bergamo, University of Ancona and the Institute of Industrial Technologies and Automation of the Italian National Research Council in the framework of the project PRIN2009 MM&A, funded by MIUR. Besides analyzing theoretical and practical aspects related to the design of the work cell components (positioning and orienting devices, grippers, vision and control systems), an automated test bed for the assembly of micro pieces whose typical dimension belongs to the submillimeter scale range has been implemented. The perspective is to contribute to the realization of general automatic production systems at the moment absent for objects of these dimensions

    Design of a miniaturized work-cell for micro-manipulation

    Get PDF
    The paper describes the design and development of a miniaturised workcell devoted to the robotized micro manipulation and assembly of extremely small components, jointly carried out by the University of Brescia, University of Bergamo, University of Ancona and the Institute of Industrial Technologies and Automation of the Italian National Research Council in the framework of the project PRIN2009 MM&A, funded by MIUR. Besides analyzing theoretical and practical aspects related to the design of the work cell components (positioning and orienting devices, grippers, vision and control systems), an automated test bed for the assembly of micro pieces whose typical dimension belongs to the submillimeter scale range has been implemented. The perspective is to contribute to the realization of general automatic production systems at the moment absent for objects of these dimensions

    A Plug and Produce Framework for Industrial Collaborative Robots

    Get PDF
    Collaborative robots are today ever more interesting in response to the increasing need for agile manufacturing equipment. Contrary to traditional industrial robots, collaborative robots are intended for working in dynamic environments alongside the production staff. To cope with the dynamic environment and workflow, new configuration and control methods are needed compared to those of traditional industrial robots. The new methods should enable shop floor operators to reconfigure the robot. This article presents a plug and produce framework for industrial collaborative robots. The article focuses on the control framework enabling quick and easy exchange of hardware modules as an approach to achieving plug and produce. To solve this, an agent-based system is proposed building on top of the robot operating system. The framework enables robot operating system packages to be adapted into agents and thus supports the software sharing of the robot operating system community. A clear separation of the hardware agents and the higher level task control is achieved through standardization of the functional interface, a standardization maintaining the possibility of specialized function features. A feasibility study demonstrates the validity of the framework through a series of reconfigurations performed on a modular collaborative robot. </jats:p

    What Drives Consumers in China to Buy Clothing Online? Application of the Technology Acceptance Model

    Get PDF
    An enormous number of Internet users have made China a profitable e-commerce marketplace, and clothing is one of the most frequently purchased items. This study explores the predictors of consumers’ motivation to buy clothing online in China by extending the technology acceptance model. Data were collected via an online questionnaire, resulting in 504 returned responses. The results indicate that perceived usefulness has a significant effect on consumers’ intention to buy clothing online; however, no direct relationship between perceived ease of use and buying intention was found. Furthermore, perceived convenience, perceived money saving, and perceived time-saving can explain why consumers perceive buying clothing online as useful, and these perceptions have positive effects on buying intention. Additionally, the findings imply that fashion innovativeness and friend circles significantly influence consumers’ intention to purchase clothing online. This article discusses the results and provides recommendations for implication and future research

    Liiketoimintamallit ja sovellukset mikro- ja desktoptehtaille

    Get PDF
    The terms microfactory and desktop factory originates from Japan in the 1990’s. Small machines were developed to produce small parts and save resources. In the late 1990’s, the research spread around the world, and multiple miniaturized concepts were introduced. However, the level of commercialization remains low. More empirical evidence and business aspect is needed. This thesis discusses how the systems can be used and how the providers benefit of it, now and in the future. The research includes 18 semi-structured interviews in Europe. The interviewees are both from academic and industry, including equipment and component providers, and users and potential users. According to the interviews, research and the industry have different viewpoints to the miniaturization. Within the academics, miniaturization links to a general philosophy to match the products in size. In the industry, the small size is only a secondary sales argument. The main factors preventing breakthrough are the lack of small subsystems, the lack of examples and production engineers’ attitudes. It appears that the technology is in the beginning of the S-curve, and it has systematic development as well as slow technology diffusion. More cooperation and a large scale demonstration are needed. In the literature, there are multiple applications. The MEMS industry is stated as one promising industry. The research aims usually for high level of automation. Based on interviews, the systems are used as a semi-automatic tool for component manufacturing and assembly. In the future, educational and laboratory use as well as prototyping are promising. Local cleanrooms interest but questions arise. In addition, retail level personalization, home fabrication and the MEMS industry include problems. For providers, the technology offers two promising customer segments (Lean manufacturers and fully loaded factories), few additional segments (e.g. educational, laboratories and offices) and it eases some alternative charging models (e.g. leasing, and capacity sales)

    Precision Assembly Technologies and Systems: 5th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2010 Chamonix, France, February 14-17, 2010, Proceedings

    No full text
    International audienceBook Front Matter of AICT 31
    corecore