8,738 research outputs found

    IP Over ICN Goes Live

    Get PDF
    Information-centric networking (ICN) has long been advocating for radical changes to the IP-based Internet. However, the upgrade challenges that this entails have hindered ICN adoption. To break this loop, the POINT project proposed a hybrid, IP-over-ICN, architecture: IP networks are preserved at the edge, connected to each other over an ICN core. This exploits the key benefits of ICN, enabling individual network operators to improve the performance of their IP-based services, without changing the rest of the Internet. We provide an overview of POINT and outline how it improves upon IP in terms of performance and resilience. Our focus is on the successful trial of the POINT prototype in a production network, where real users operated actual IP-based applications

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Connecting the World of Embedded Mobiles: The RIOT Approach to Ubiquitous Networking for the Internet of Things

    Full text link
    The Internet of Things (IoT) is rapidly evolving based on low-power compliant protocol standards that extend the Internet into the embedded world. Pioneering implementations have proven it is feasible to inter-network very constrained devices, but had to rely on peculiar cross-layered designs and offer a minimalistic set of features. In the long run, however, professional use and massive deployment of IoT devices require full-featured, cleanly composed, and flexible network stacks. This paper introduces the networking architecture that turns RIOT into a powerful IoT system, to enable low-power wireless scenarios. RIOT networking offers (i) a modular architecture with generic interfaces for plugging in drivers, protocols, or entire stacks, (ii) support for multiple heterogeneous interfaces and stacks that can concurrently operate, and (iii) GNRC, its cleanly layered, recursively composed default network stack. We contribute an in-depth analysis of the communication performance and resource efficiency of RIOT, both on a micro-benchmarking level as well as by comparing IoT communication across different platforms. Our findings show that, though it is based on significantly different design trade-offs, the networking subsystem of RIOT achieves a performance equivalent to that of Contiki and TinyOS, the two operating systems which pioneered IoT software platforms

    A Review on Cache Replacement Strategies in Named Data Network

    Get PDF
    Named Data Network (NDN) architecture is one of the newest and future-aspired Internet communication systems. Video-on-Demand (VoD) has rapidly emerged as a popular online service. However, it is costly, considering its high bandwidth and popularity. Internet on-demand video traffic has been growing quite fast, and on-demand video streaming has gained much attention. The problem of this study is that the NDN architecture is processing several forms of online video requests simultaneously. However, limited cache and multiple buffering of requested videos result in loss of data packet as a consequence of the congestion in the cache storage network. Addressing this problem is essential as congestion cause network instability. This work emphasizes on the review of cache replacement strategies to deal with the congestion issue in Named Data Networks (NDN) during the VoD delivery in order to determine the performance (strengths and weaknesses) of the cache replacement strategies. Finally, this study proposes the replacement strategies must be enhanced with a new strategy that depends on popularity and priority regarding the congestion. This study would positively benefits both suppliers and users of Internet videos

    Coexistence of ICN and IP networks: an NFV as a service approach

    Get PDF
    International audienceIn contrast to the current host-centric architecture, Information-Centric Networking (ICN) adopts content naming instead of host address and in-network caching to enhance the content delivery, improve the data distribution, and satisfy users' requirements. As ICN is being incrementally deployed in different real-world scenarios, it will exist with IP-based services in a hybrid network setting. Full deployment of ICN and total replacement of IP protocol is not feasible at the current stage since IP is dominating the Internet. On the other hand, redesigning TCP/IP applications from ICN perspective is a time-consuming task and requires a careful investigation from both business and technical point of view. Thus, the coexistence of ICN and IP is one of the suitable solutions. Towards this end, we propose a simple yet efficient coexistence solution based on Network Function Virtualization (NFV) technology. We define a set of communication regions and control virtual functions. A gateway node is used as an intermediate entity to fetch and deliver content over regions. The simulation results show that the proposed approach is valid and allow content fetching and delivering from different ICN and/to IP regions in an efficient manner

    Proxcache: A new cache deployment strategy in information-centric network for mitigating path and content redundancy

    Get PDF
    One of the promising paradigms for resource sharing with maintaining the basic Internet semantics is the Information-Centric Networking (ICN). ICN distinction with the current Internet is its ability to refer contents by names with partly dissociating the host-to-host practice of Internet Protocol addresses. Moreover, content caching in ICN is the major action of achieving content networking to reduce the amount of server access. The current caching practice in ICN using the Leave Copy Everywhere (LCE) progenerate problems of over deposition of contents known as content redundancy, path redundancy, lesser cache-hit rates in heterogeneous networks and lower content diversity. This study proposes a new cache deployment strategy referred to as ProXcache to acquire node relationships using hyperedge concept of hypergraph for cache positioning. The study formulates the relationships through the path and distance approximation to mitigate content and path redundancy. The study adopted the Design Research Methodology approach to achieve the slated research objectives. ProXcache was investigated using simulation on the Abilene, GEANT and the DTelekom network topologies for LCE and ProbCache caching strategies with the Zipf distribution to differ content categorization. The results show the overall content and path redundancy are minimized with lesser caching operation of six depositions per request as compared to nine and nineteen for ProbCache and LCE respectively. ProXcache yields better content diversity ratio of 80% against 20% and 49% for LCE and ProbCache respectively as the cache sizes varied. ProXcache also improves the cache-hit ratio through proxy positions. These thus, have significant influence in the development of the ICN for better management of contents towards subscribing to the Future Internet

    TagNet: a scalable tag-based information-centric network

    Get PDF
    The Internet has changed dramatically since the time it was created. What was originally a system to connect relatively few remote users to mainframe computers, has now become a global network of billions of diverse devices, serving a large user population, more and more characterized by wireless communication, user mobility, and large-scale, content-rich, multi-user applications that are stretching the basic end-to-end, point-to-point design of TCP/IP. In recent years, researchers have introduced the concept of Information Centric Networking (ICN). The ambition of ICN is to redesign the Internet with a new service model more suitable to today's applications and users. The main idea of ICN is to address information rather than hosts. This means that a user could access information directly, at the network level, without having to first find out which host to contact to obtain that information. The ICN architectures proposed so far are based on a "pull" communication service. This is because today's Internet carries primarily video traffic that is easy to serve through pull communication primitives. Another common design choice in ICN is to name content, typically with hierarchical names similar to file names or URLs. This choice is once again rooted in the use of URLs to access Web content. However, names offer only a limited expressiveness and may or may not aggregate well at a global scale. In this thesis we present a new ICN architecture called TagNet. TagNet intends to offer a richer communication model and a new addressing scheme that is at the same time more expressive than hierarchical names from the viewpoint of applications, and more effective from the viewpoint of the network for the purpose of routing and forwarding. For the service model, TagNet extends the mainstream "pull" ICN with an efficient "push" network-level primitive. Such push service is important for many applications such as social media, news feeds, and Internet of Things. Push communication could be implemented on top of a pull primitive, but all such implementations would suffer for high traffic overhead and/or poor performance. As for the addressing scheme, TagNet defines and uses different types of addresses for different purposes. Thus TagNet allows applications to describe information by means of sets of tags. Such tag-based descriptors are true content-based addresses, in the sense that they characterize the multi-dimensional nature of information without forcing a partitioning of the information space as is done with hierarchical names. Furthermore, descriptors are completely user-defined, and therefore give more flexibility and expressive power to users and applications, and they also aggregate by subset. By their nature, descriptors have no relation to the network topology and are not intended to identify content univocally. Therefore, TagNet complements descriptors with locators and identifiers. Locators are network-defined addresses that can be used to forward packets between known nodes (as in the current IP network); content identifiers are unique identifiers for particular blocks of content, and therefore can be used for authentication and caching. In this thesis we propose a complete protocol stack for TagNet covering the routing scheme, forwarding algorithm, and congestion control at the transport level. We then evaluate the whole protocol stack showing that (1) the use of both push and pull services at the network level reduces network traffic significantly; (2) the tree-based routing scheme we propose scales well, with routing tables that can store billions of descriptors in a few gigabytes thanks to descriptor aggregation; (3) the forwarding engine with specialized matching algorithms for descriptors and locators achieves wire-speed forwarding rates; and (4) the congestion control is able to effectively and fairly allocate all the bandwidth available in the network while minimizing the download time of an object and avoiding congestion

    情報セントリックIoTサーベランスシステムに関する研究

    Get PDF
    早大学位記番号:新8269早稲田大
    corecore