123,801 research outputs found
Recommended from our members
Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis.
BACKGROUND: To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. METHODS: We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1α and IL-1β); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453,411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746,171 total participants). FINDINGS: For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0.22 SD (95% CI 0.18-0.25; 12.5%; p = 9.3 × 10(-33)), concentrations of interleukin 6 decreased by 0.02 SD (-0.04 to -0.01; -1.7%; p = 3.5 × 10(-3)), and concentrations of C-reactive protein decreased by 0.03 SD (-0.04 to -0.02; -3.4%; p = 7.7 × 10(-14)). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1.15 (1.08-1.22; p = 1.8 × 10(-6)) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1.03 (1.02-1.04; p = 3.9 × 10(-10)). Per-allele odds ratios were 0.97 (0.95-0.99; p = 9.9 × 10(-4)) for rheumatoid arthritis, 0.99 (0.97-1.01; p = 0.47) for type 2 diabetes, 1.00 (0.98-1.02; p = 0.92) for ischaemic stroke, and 1.08 (1.04-1.12; p = 1.8 × 10(-5)) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. INTERPRETATION: Human genetic data suggest that long-term dual IL-1α/β inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations.This work was funded by the UK Medical Research Council ( G0800270 ), British Heart Foundation ( SP/09/002 ), UK National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council ( 268834 ), and European Commission Framework Programme 7 ( HEALTH-F2-2012-279233 ). Funding for the component studies in this analysis is provided in the appendix. Murray Clarke, Philip De Jager, Peter Libby, Ziad Mallat, Nadeem Sarwar, and John Todd provided helpful comments on an earlier version of the manuscript. Collaborators are listed in the appendix pp 65–86. A full set of acknowledgments is provided in the appendix pp 87–96.This is the final version. It was first published by Elsevier at http://www.thelancet.com/journals/landia/article/PIIS2213-8587%2815%2900034-0/fulltext
Interleukin-1 polymorphisms associated with increased risk of gastric cancer
Helicobacter pylori infection is associated with a variety of clinical outcomes including gastric cancer and duodenal ulcer disease. The reasons for this variation are not clear, but the gastric physiological response is influenced by the severity and anatomical distribution of gastritis induced by H. pylori. Thus, individuals with gastritis predominantly localized to the antrum retain normal (or even high) acid secretion, whereas individuals with extensive corpus gastritis develop hypochlorhydria and gastric atrophy, which are presumptive precursors of gastric cancer. Here we report that interleukin-1 gene cluster polymorphisms suspected of enhancing production of interleukin-1-beta are associated with an increased risk of both hypochlorhydria induced by H. pylori and gastric cancer. Two of these polymorphism are in near-complete linkage disequilibrium and one is a TATA-box polymorphism that markedly affects DNA-protein interactions in vitro. The association with disease may be explained by the biological properties of interleukin-1-beta, which is an important pro-inflammatory cytokine and a powerful inhibitor of gastric acid secretion. Host genetic factors that affect interleukin-1-beta may determine why some individuals infected with H. pylori develop gastric cancer while others do no
Neonatal-onset multisystem inflammatory disease responsive to interleukin-1 beta inhibition
BACKGROUND:Neonatal-onset multisystem inflammatory disease is characterized by fever, urticarial rash, aseptic meningitis, deforming arthropathy, hearing loss, and mental retardation. Many patients have mutations in the cold-induced autoinflammatory syndrome 1 (CIAS1) gene, encoding cryopyrin, a protein that regulates inflammation.METHODS:We selected 18 patients with neonatal-onset multisystem inflammatory disease (12 with identifiable CIAS1 mutations) to receive anakinra, an interleukin-1-receptor antagonist (1 to 2 mg per kilogram of body weight per day subcutaneously). In 11 patients, anakinra was withdrawn at three months until a flare occurred. The primary end points included changes in scores in a daily diary of symptoms, serum levels of amyloid A and C-reactive protein, and the erythrocyte sedimentation rate from baseline to month 3 and from month 3 until a disease flare.RESULTS:All 18 patients had a rapid response to anakinra, with disappearance of rash. Diary scores improved (P<0.001) and serum amyloid A (from a median of 174 mg to 8 mg per liter), C-reactive protein (from a median of 5.29 mg to 0.34 mg per deciliter), and the erythrocyte sedimentation rate decreased at month 3 (all P<0.001), and remained low at month 6. Magnetic resonance imaging showed improvement in cochlear and leptomeningeal lesions as compared with baseline. Withdrawal of anakinra uniformly resulted in relapse within days; retreatment led to rapid improvement. There were no drug-related serious adverse events.CONCLUSIONS:Daily injections of anakinra markedly improved clinical and laboratory manifestations in patients with neonatal-onset multisystem inflammatory disease, with or without CIAS1 mutations
Primary cilia elongation in response to interleukin-1 mediates the inflammatory response
Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA
Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor treated CML stem cells
Treatment of chronic myelogenous leukemia (CML) with BCR-ABL tyrosine kinase inhibitors
(TKI) fails to eliminate leukemia stem cells (LSC). Patients remain at risk for relapse, and
additional approaches to deplete CML LSC are needed to enhance the possibility of
discontinuing TKI treatment. We have previously reported that expression of the pivotal proinflammatory
cytokine interleukin-1 (IL-1) is increased in CML bone marrow (BM). We show
here that CML LSC demonstrated increased expression of the IL-1 receptors, IL-1RAP and IL-
1R1, and enhanced sensitivity to IL-1-induced NF-KB signaling compared to normal stem cells.
Treatment with recombinant IL-1 receptor antagonist (IL-1RA) inhibited IL-1 signaling in CML
LSC and inhibited growth of CML LSC. Importantly, the combination of IL-1RA with TKI resulted
in significantly greater inhibition of CML LSC compared with TKI alone. Our studies also suggest
that IL-1 signaling contributes to overexpression of inflammatory mediators in CML LSC,
suggesting that blocking IL-1 signaling could modulate the inflammatory milieu. We conclude
that IL-1 signaling contributes to maintenance of CML LSC following TKI treatment, and that IL-
1 blockade with IL-1RA enhances elimination of TKI-treated CML LSC. These results provide a
strong rationale for further exploration of anti-IL-1 strategies to enhance LSC elimination in CML
Interleukin 1-β, Interleukin-1 Receptor Antagonist, and Interleukin 18 in Children with Acute Spontaneous Urticaria
Very little is known about the role of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in urticaria. Material and Methods. Serum levels of IL-1β, IL-1 receptor antagonist (IL-1RA), and IL-18 were measured in 56 children with urticaria and in 41 healthy subjects. Results. Serum IL-1β did not differ between children with acute urticaria and controls. Children with single episode of urticaria had higher levels of IL-1RA and IL-18 than healthy subjects. In children with single episode of urticaria, level of IL-1RA correlated with C-reactive protein (CRP), D-dimer, and IL-1β levels. In subjects with recurrence of urticaria IL-1RA was positively correlated with WBC and D-dimer levels. No correlation of cytokine levels and urticaria severity scores (UAS) in all children with urticaria was observed. In children with single episode of urticaria UAS correlated with CRP level. In the group with single episode of urticaria and in children with symptoms of upper respiratory infection, IL-1RA and IL-18 levels were higher than in controls. The former was higher than in noninfected children with urticaria. In conclusion, this preliminary study documents that serum IL-1RA and IL-18 levels are increased in some children with acute urticaria. However further studies are necessary to define a pathogenic role of IL-1β, IL-1RA, and IL-18 in urticaria
Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence
Viral immune evasion strategies target key aspects of the host antiviral response. Recently, it has been recognized that Toll-like receptors (TLRs) have a role in innate defense against viruses. Here, we define the function of the vaccinia virus (VV) protein A46R and show it inhibits intracellular signalling by a range of TLRs. TLR signalling is triggered by homotypic interactions between the Toll-like-interleukin-1 resistance (TIR) domains of the receptors and adaptor molecules. A46R contains a TIR domain and is the only viral TIR domain-containing protein identified to date. We demonstrate that A46R targets the host TIR adaptors myeloid differentiation factor 88 (MyD88), MyD88 adaptor-like, TIR domain-containing adaptor inducing IFN-beta (TRIF), and the TRIF-related adaptor molecule and thereby interferes with downstream activation of mitogen-activated protein kinases and nuclear factor kappaB. TRIF mediates activation of interferon (IFN) regulatory factor 3 (IRF3) and induction of IFN-beta by TLR3 and TLR4 and suppresses VV replication in macrophages. Here, A46R disrupted TRIF-induced IRF3 activation and induction of the TRIF-dependent gene regulated on activation, normal T cell expressed and secreted. Furthermore, we show that A46R is functionally distinct from another described VV TLR inhibitor, A52R. Importantly, VV lacking the A46R gene was attenuated in a murine intranasal model, demonstrating the importance of A46R for VV virulence
Evidence of epistasis between Interleukin-1 and Selenoprotein-S with susceptibility to rheumatoid arthritis
Objective: Selenoprotein-S (SELS) is involved in the stress response within the endoplasmic reticulum (ER) and inflammation. Recently, promoter variants in the SELS gene were shown to be associated with plasma levels of interleukin (IL)6, IL1β and tumour necrosis factor (TNF). It was hypothesised that these variants could influence rheumatoid arthritis (RA) susceptibility and may interact with functional single nucleotide polymorphisms (SNPs) in the genes for IL1, IL6 and TNF.
Methods: Genotyping was performed in 988 unrelated healthy controls and 965 patients with RA. Stratified analysis was used to test for interactions. Single gene effects and evidence of epistasis were investigated using the Mantel–Haenszel (M–H) test and the linkage disequilibrium (LD)-based statistic.
Results: No association of SELS −105 genotype and RA susceptibility was detected. Stratification of SELS −105 genotypes by IL1 −511 genotypes showed that the disease risk (comparing AA/GA to GG at the SELS −105 locus) in individuals with the GG/AG genotype at the IL1β −511 locus was significantly lower than that in individuals having the AA genotype at the IL1β −511 locus (odds ratio (OR): 0.9 and 2.3, respectively; p = 0.004 by M–H test). Significant epistasis was also detected using the LD-based statistic (p = <0.001). No interaction was observed between SELS −105 and IL6 or TNF variants.
Conclusion: Our results reveal evidence of strong epistasis in two genes in the IL1 production pathway and highlight the potential importance of gene–gene interactions in the pathogenesis of RA
- …
