3,405,207 research outputs found
Methodology for Process Improvement Through Basic Components and Focusing on the Resistance to Change.
This paper describes a multi-model methodology that implements a smooth and continuous process improvement, depending on the organization's business goals and allowing users to establish their improvement implementation pace. The methodology focuses on basic process components known as ‘best practices’. Besides, it covers following the topics: knowledge management and change management. The methodology description and the results of a case study on project management process are included
Method for analyzing radiation sensitivity of integrated circuits
A method for analyzing the radiation sensitivity of an integrated circuit is described to determine the components. The application of a narrow radiation beam to portions of the circuit is considered. The circuit is operated under normal bias conditions during the application of radiation in a dosage that is likely to cause malfunction of at least some transistors, while the circuit is monitored for failure of the irradiated transistor. When a radiation sensitive transistor is found, then the radiation beam is further narrowed and, using a fresh integrated circuit, a very narrow beam is applied to different parts of the transistor, such as its junctions, to locate the points of greatest sensitivity
Method for fabricating solar cells having integrated collector grids
A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device
Improved accuracy for finite element structural analysis via a new integrated force method
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools
Collinear and Transverse Momentum Dependent parton densities obtained with a Parton Branching Method
We present a solution of the DGLAP evolution equations, written in terms of
Sudakov form factors to describe the branching and no-branching probabilities,
using a parton branching Monte Carlo method. We demonstrate numerically that
this method reproduces the semi-analytical solutions. We show how this method
can be used to determine Transverse Momentum Dependent (TMD) parton
distribution functions, in addition to the usual integrated parton
distributions functions. We discuss numerical effects of the boundary of soft
gluon resolution scale parameter on the resulting parton distribution
functions. We show that a very good fit of the integrated TMDs to high
precision HERA data can be obtained over a large range in x and Q^2
- …
