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Summary

Finite element structural analysis based on the original
displacement (stiffness) method has been researched and
developed for over three decades. Although today it dominates
the scene in terms of routine engineering use, the stiffness
method does suffer from certain deficiencies. Various alternate
analysis methods, commonly referred to as the mixed and
hybrid methods, have been promoted in an attempt to com-
pensate for some of these limitations. In recent years two new
methods for finite element analyses of structures, within the
framework of the original force method concept, have been
introduced. These are termed the *‘integrated force method™”
and the ‘‘dual integrated force method.’” h )

A comparative study was carried out to determine the
accuracy of finite element analyses based on the stiffness
method, a mixed method, and the new integrated force and
dual integrated force methods. The numerical results were
obtained with the following software: MSC/NASTRAN and
ASKA for the stiffness method; an MHOST implementation
for a mixed method; and GIFT for the integrated force
methods. For the cases considered, the results indicate that,
on an overall basis, the stiffness and mixed methods present
some limitations. The stiffness method typically requires a
large number of elements in the mode] to achieve acceptable
accuracy. The MHOST mixed method tends to achicve a
higher level of accuracy for coarse models than does the
stiffness method as implemented by MSC/NASTRAN and
ASKA. The two integrated force methods, which bestow
simultaneous emphasis on stress equilibrium and strain com-
patibility, yield accurate solutions with fewer elements in a
model. The full potential of these new integrated force methods
remains largely unexploited, and they hold the promise of
spawning new finite element structural analysis tools.

Introduction and Overview

The field of finite element analysis for structures, based on
the original stiffness method and the more contemporary mixed
and hybrid methods, has made great strides during the past
three decades. General purpose finite element software such
as MSC/NASTRAN (ref. 1) and ASKA (ref. 2), based on the
stiffness method, and MHOST (ref. 3), based on a mixed-
iterative method, are examples of structural analysis tools

available today. The current generation of finite element

analysis software, coupled with modern computer hardware,
provides the capability to solve challenging engineering
problems that require extensive numerical calculations. Despite
their popularity and prominence, the current finite element
analysis methods are not free from deficiencies, and oppor-
tunities for improvement appear to exist. In an attempt to
compensate for some of the limitations, two new formulations
within the framework of force method concepts have been
introduced during the past few years. These are termed the
““integrated force method’’ (IFM) and the ‘‘dual integrated
force method’” (IFMD). This report examines the accuracy
of finite element structural analysis via the IFM and IFMD
versus apalysis by the stiffness and the mixed and hybrid
methods. ,

An overall qualitative assessment of the various analysis
methods can be attempted from a consideration of the universal
equilibrium equations, which represent the force or stress
balance conditions. The force equilibrium conditions, in the
general context of finite element analysis, give rise to an
unsolvable indeterminate system of equations with a greater
number of unknown forces than the number of such equations.
The equilibrium equations, being indeterminate, cannot be
solved for the unknown forces, except for the trivial statically
determinate case. Because of the indeterminancy, various
alternative methods have been devised for stress analysis of
indeterminate structures. The methods available for finite
element analysis that are of interest in this study are briefly
summarized in the next section. The nomenclature for the
analysis method adapted in this paper is based on the primary
unknown of the formulation; these unknowns are defined in
table T and illustrated in figures 1 and 2.

The Integrated Force Method—A Direct Force Method

In the direct force method all of the internal forces are treated
as the primary unknowns and are directly computed by solving
a set of simultaneous equations. A solvable system of equations
is obtained by augmenting the rectangular system of
equilibrium equations with another rectangular system of
equations expressed in terms of the same unknown forces. The
augmenting system represents the strain compatibility condi-
tions. The total system resulting from the concatenation of the
force equilibrium equations and strain compatability conditions
is a solvable set of n equations in n unknowns, the solution
of which directly yields all n internal forces. This direct force
method, which bestows simultaneous emphasis on both the



TABLE I.-METHODS OF STRUCTURAL ANALYSIS AND ASSOCIATED
VARIATIONAL FUNCTIONALS

Name of method Primary variables Variational
— functional
Elasticity Structures Elasticity Structures
Completed Beltrami- | Integrated force | Stresses Forces IFM variational
Michell formulation | method (IFM) functional
Navier formulation Stiffness method | Displacements Deflections Potential encrgy
Airy formulation Classical force Stress function Redundants Complementary
method cnergy
Mixed formulation Reissner method | Stresses and Forces and Reissner
displacements deflections functional
Total formulation Washizu method | Stresses, strains, Forces, Washizu
and displacements | deformations, functional
and deflections

LAWS OF STRUCTURAL MECHANICS

Strain
Stress compatibility Constitutive
equilibrium used only law

in IFM

Stress
compalibility

Integrated
force -
method

RELATIONS OF STRUCTURAL MECHANICS

Strain Stress
displacement || displacement

i

Displacement
equilibrium

Displacement
continuity

Displacement
™ method

e ——————————

Figure 1.—Force and displacement methods.

equilibrium equations and the compatibility conditions and
solves for the forces directly, is the integrated force method
(IFM) (refs. 4 to 19). The additional key ingredient for the
IFM, which parallels the completed Beltrami-Michell formula-
tion of clasticity (refs. 5, 14, 17, and 20), is the explicit
formulation of the global strain compatibility conditions of
finite element models. These compatability conditions of finite
element models, which are analogous to St. Venant’s strain
formulation of elasticity, have been divided into interface,
cluster, and boundary compatibility conditions (refs. 8, 10,
and 11). They enforce deformation balance (1) along the
element interface, (2) for a cluster of elements, and (3) along
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Figure 2. —Hybrid and mixed methods.

the constrained segment of the boundary of the discrete model.
The IFM was not developed in the formative 1960°s because
the concept of the compatibility conditions augmenting the
equilibrium equations for indeterminate structures had not yet
been recognized.

Redundant Force Method

Despite the nonavailability of an explicit, computer-
automated compatibility formulation, a second classical analysis
method, known as the redundant force method (refs. 21 and
22), was developed. The redundant force method was first
formulated by Maxwell in the mid 1800’s and remained the
analysis method of choice for about a century. Recognizing
the indeterminate nature of the equilibrium equations, Maxwell
introduced the ingenious concept of redundant forces and their
use in analysis, In redundant analysis, elements are “‘cut’ to



create a determinate system; then ad hoc compatibility is
restored by closing the “‘gaps’’. This key procedure yields a
system of r equations in terms of r unknown redundant forces.
Redundant analysis yields redundant forces that are treated as
external loads on the auxiliary determinate structure. The
indeterminate analysis is completed by invoking the principle
of superposition on the determinant structure.

The redundant force method requires the selection of an
auxiliary determinate basis structure and corresponding
redundant forces, which is the major difficulty of this classical
analysis method. Prior to the availability of computers and
the computerization of matrix methods, redundants were
identified manually; such a process depended on the subjective
experience and judgment of the structural analyst. Sub-
sequently, redundant identification was automated, at least in
principle (refs. 23 to 31), on the basis of linear algebra
concepts such as rank, column combination and diagonal
dominance of the equilibrium matrix, and a self-equilibrating
stress state. Such concepts, although analytically elegant,
lacked the physical features of the compatibility conditions of
finite element models (i.e., deformation balance among
element interfaces, clusters, and constrained boundary
segments) and the desirable numerical features, such as
bandwidth and conditioning of the compatibility matrix. As
a result, the redundant force method failed for structures of
any complexity. Despite the attention of and earnest efforts
by prominent researchers (refs. 23, 25, 27, and 30), the Air
Force, and NASA, the redundant force method never became
an integral part of the well-known finite element software
NASTRAN. The original intent of NASA was to provide for
both force and stiffness methods in NASTRAN; however, only
the stiffness method implementation now exists.

To illustrate the complexity associated with automatic redun-
dant selection, consider as an example a plate flexure problem
(see appendix) in which the plate is discretized by two finite
elements and the model has m = 12 displacement unknowns
and n = 18 force unknowns. The maximum possible number
of redundant force systems is given by

— n!
= m)'m!

or CT,, = 49,504 in this case, of which probably only one
is the desired canonical set. The maximum possible number
of redundant systems from which a canonical set can be
selected increases rapidly for more complex structures. For
example, for m = 15 displacement unknowns and n = 25 force
unknowns, the maximum number of possible sets exceeds
3 million. Attempts have been made to reduce such large
numbers of choices for redundants; however, the problem has
not been satisfactorily resolved because of its intrinsically
difficult nature. Overall, the classical redundant force method
as a computerized method of analysis outlived its usefulness
and was abandoned during the early stages of the development

of computerized structural analysis technology. Its inclusion
in the discussion here is for completeness, but it is not
considered further in this study.

Stiffness Method

The statically indeterminate nature of the equilibrium
equations and the nonexistence of a strain compatibility formu-
lation led to the direct displacement analysis, or original
stiffness, method (ref. 21). In the stiffness method, first
formulated by Clebsch (1833 to 1872), the equilibrium equa-
tions are written in terms of displacements that when
augmented with the displacement continuity conditions give
rise to an adequate system of equations with which to solve
for the unknown displacements (see the appendix). From the
known displacement state, the forces and stress parameters
are obtained as secondary variables by differentiation or its
equivalent, which could tend to degrade the accuracy of the
stress predictions. The stiffness method, which generally
requires extensive computations, was not popular until the
emergence of high-speed computers. Since the dawn of the
computer age (for the past three decades), the stiffness method
has been extensively researched throughout the world, and
today it dominates the engineering analysis scene.

Mixed and Hybrid Methods

Because of the limitations of the stiffness method, especially
with respect to the accuracy of stress solutions, two other
approaches have been devised for finite element analysis of
structures. The method that considers both stresses and
displacements as simultaneous unknowns is referred to as the
hybrid method (refs. 31 to 33 and fig. 2). The other method,
known as the mixed method (refs. 3 and 34 to 38 and fig. 2),
treats displacements, stresses, and strains as simultaneous
unknowns. Neither the hybrid nor the mixed method imposes
strain compatibility conditions explicitly. Rather, these two
methods systematically combine the equilibrium equations, the
displacement continuity conditions, the kinematic relations,
and the material constitutive relations in one form or another.
The hybrid and the mixed methods, although generally more
computationally demanding than the direct methods (for
comparable discretizations), do not, however, contain any
fundamentally new ingredient that is not already present in
the force and displacement methods.

The various analysis methods that have been associated with
underlying variational functionals are summarized in table I
and depicted in figures | and 2.

In these figures the following relationships are shown:

(1) The displacement method explicitly utilizes the equi-
librium equations written in terms of displacements, which
are augmented with the displacement continuity conditions
(fig. 1).

(2) The hybrid method includes equilibrium equations, stress
displacement relations, and the displacement continuity
conditions (fig. 2).



(3) The mixed method uses equilibrium equations, strain
displacement relations, the constitutive law, and the displace-
ment continuity conditions. (Note that the equilibrium
equations are considered in all the methods.)

(4) The IFM is the only formulation that makes use of the
strain compatibility conditions along the interface, field, and
boundaries of the finite element model in addition to the
equilibrium equations (fig. 1).

(5) The displacement method and the hybrid and mixed
methods do not explicitly make use of the strain compatibility
conditions (figs. | and 2).

If variables are classified with respect to the universal law
of equilibrium, then forces are its primal variables, and
displacements are its dual variables. On this basis, the IFM
is the primal analysis method since its unknowns are the forces,
and the stiffness method is the dual method since its unknowns
stiffness, method has been exhaustively researched, and its
potential has been exploited to the extent that the method may
have reached a plateau in its development. Conversely, the
primal analysis method, with the emergence of the two new
integrated force methods, appears to hold considerable
potential for further development.

Finite Element Analysis

In the discrete finite element analysis technique, the element
characteristics and external foads are lumped at the nodal points
of the model, and the governing equations are written with
respect to these grid points. The solution obtained by finite
element analysis should satisfy the two fundamental axioms of
structural mechanics (i.e., the satisfaction of the force equilib-
rium equations and the compliance of the strain compatibility
conditions), at least with reference to the grid points of the
model. Even though the stiffness method depends heavily on
the state of equilibrium at the nodal points, it is commonly
observed that at those very cardinal points stresses recovered
from the nodal displacements often violate equilibrium. The
mixed method of MHOST attempts to compensate for this
limitation through an iterative solution process that equilibrates
stresses at the node points. Although stress equilibrium
imbalance has been researched, the problems have not been
resolved to complete satisfaction. The TFM, in which the internal
force parameters are explicitly constrained to simultaneously
satisfy both the equilibrium equations and the compatibility con-
ditions with reference to the grid points, is an attempt to obtain
accurate stresses even at the nodes of the finite element model.

The purpose of this report is to examine the accuracy of the
different methods of finite element analysis. To accomplish this,
the results obtained for several test problems by different methods
were scrutinized with regard to the relative performance.

Numerical solutions for the test cases were obtained with
the following finite element software:

GIFT.—Based on the theories of the IFM and the dual IFMD,
GIFT is a modest program developed for research purposes.

MSC/NASTRAN.—This program is one of the most widely
used stiffness-method-based codes available today.

MHOST.—Designed especially for nonlinear analysis, this
program provides a versatile analysis capability based on a
mixed-iterative formulation.

ASKA.—The ASKA program, developed in Europe, is also
based on the stiffness method. It is used here mainly for
numerical verification with the MSC/NASTRAN code.

Hybrid Method.—Although obtained independent of this
study, solutions from a hybrid method using element HMPL5
(ref. 34) are included here for the sake for completeness.

This report docs not attempt to elaborate on the theoretical
details of the different analysis methods. References 4 to 19
can be examined for representative research results on the
theory of the IFM for elastic continua, finite element analysis,
and design optimization.

The subject matter of this report is presented in four sections:
the basic equations of the analysis; the test cases and results;
a discussion of the results; and conclusions. In addition, to
illustrate the calculation sequence for the force and the stiffness
methods, an example is provided in appendix A. Symbols are
defined in appendix B.

Basic Equations of the Methods

This section summarizes the governing equations of the analysis
methods investigated here, namely, (1) integrated force method,
(2) dual integrated force method, (3) stiffness method, and
(4) mixed-iterative method. The equations of the hybrid method
are not presented. For detailed examination of the theories of
the methods, references 1 to 8, 20, and 21 are suggested.

Integrated Force Method and Dual Integrated
Force Method

In the integrated force method (IFM), the internal forces
are taken as the primary unknowns and the displacements are
obtained by a back calculation operation. The dual integrated
force method (IFMD) is derived from the equations of the IFM
by eliminating internal forces in favor of displacements. The
primal variables of the IFMD are, then, the displacements from
which forces are recovered in secondary operations.

In the IFM a discretized structure for the purpose of analysis
is designated by attributes (n,m), which denote the number
of force and displacement degrees of freedoms, respectively.
In the IFM analysis a governing set of n equations is expressed
in terms of » unknown internal forces {F}. The system of n
equations is obtained by augmenting the set of m force
equilibrium equations

(B] {F} = [P}
with the set of r = n — m strain compatibility conditions

[CIGI][F] = 6R]



as follows:

B |y (P o
[mmjm‘&m} o SIFi= ()

where [B] is the mXxn equilibrium matrix, [C] is the rXn
compatibility matrix, [G] is the nXn concatenated flexibility
matrix that links deformations {3} to forces {F] as

(8] = [G](F}

{F} is the nx 1 internal force vector, [P} is the mXx 1 external
load vector, and [6R] is the rx 1 effective initial deformation
vector defined by

(0R] = ~ [C]{Bo)

where {8,] is the 1 initial deformation vector, and [S] is
the nxn IFM governing matrix. The matrices [B], [C], [G],
and [S] are banded and have full row ranks of m, r, n, and
n, respectively. The solution of equation (1) yields n internal
forces. The displacements are obtained from the forces in a
back calculation operation expressed as

(X} = J{GIF} + (By)} @)

where [J] is the deformation coefficient matrix defined as the
first mXn partition of [[S]~ 11", Equations (1) and (2)
represent the two key relations of the IFM for finite element
analysis that are needed to calculate the forces and
displacements, respectively.

In terms of fundamental operators, an analogy can be made
between the IFM and the theory of elasticity (ref. 40). The
three fundamental operators of elasticity are (1) the equilibrium
operator of Cauchy, which relates stresses to external loads;
(2) the compatibility operator of St. Venant, which controls
components of strain; and (3) the material constitutive tensor
of Hooke, which relates strains to stresses. Likewise, the IFM
has three operators that are equivalent to the operators of the
elasticity theory. The operators, which become matrices in
the context of finite element analysis, are (1) the equilibrium
matrix [B], which links internal forces to external loads; (2)
the compatibility matrix [C], which governs the deformations;
and (3) the flexibility matrix [G], which relates deformations
and forces. Both the equilibrium and the compatibility
operators of elasticity and the corresponding matrices of the
IFM are nonsymmetrical, whereas the material constitutive
tensor and the flexibility matrix are symmetrical. Governing
operators of other formulations (e.g., Navier’s displacement
formulation, Airy’s stress function formulation, Reissner’s
hybrid formulation, or the Hu-Washizu’s mixed formulation)
and the matrices of other discrete analysis methods (such as
the stiffness, redundant force, mixed, and hybrid methods)
are, in principle, derivable from the basic unsymmetrical oper-

ators of elasticity and the matrices of the IFM. Mathematically
speaking, the derived operators and matrices of other
formulations can possess characteristics (i.e., numerical
norms, spectral radii, and stability of equation systems) no
more superior than the basic unsymmetrical operators of
elasticity theory or matrices of the IFM, even when the derived
operators and matrices become symmetric (refs. 6 and 7).

The governing equations of the IFMD are generated from
the IFM equations (1) and (2) by mapping forces into
displacements and vice versa. The key equation of the IFMD,
wherein nodal displacement unknowns {X] become the primary
variables and are linked to the external loads {P}, resembles
the familiar stiffness equation and is given as

[K,)(X] = [P} 3)

where [K,] is a matrix defined by the first mXm partition of
the matrix product [[S][G] “1[S]7] and is referred to as the
pseudo-stiffness matrix.

For the element types that have been formulated to date
(including rectangular membrane and flexure elements,
triangular membrane and flexure elements, and solid brick and
tetrahedral elements), we have observed that, for consistent
force and displacement field assumptions, the attributes of the
pseudo-stiffness matrix (such as symmetry, dimension, and
sparsity) are identical to those of the conventional stiffness
matrix [K]. Only the magnitudes of nonzero coefficients of
the two matrices [K] and [K|] differ.

Once displacements are obtained as the solution to equa-
tion (3), forces can be obtained by back calculation as

{F} = [G))X] )

where the nxm force coefficient matrix [G,] is
nonsymmetrical and is defined in terms of the product of the
inverse of the concatenated flexibility matrix {G] ~' and the
first n Xm partition of the transpose of the IFM governing
matrix [S]7 (defined in eq. (1)). Since the flexibility matrix
[G] is the block diagonal concatenation of the corresponding
element matrices, its inverse is inexpensive to compute, and
calculating forces from displacements by using equation (4)
requires only a smali fraction of the total computations -
necessary for the entire analysis.

Since equations (1) and (2) of the IFM are mathematically
equivalent to equations (3) and (4) of the IFMD, the forces,
displacements, and deformations obtained by either of the
methods are identical; thus,

(Flirm = {Flirpmp (5a)
Xirm = Xliemp (5b)
Blem = Blirmp (5¢)



The relations given by equation (5) have also been observed
numerically; that is, the numerical results obtained for each
test case satisfied equation (5) as expected.

The Stiffness Method

The governing equation of the stiffness method, wherein the
primary variables {X] (the nodal displacements of the finite
element model) are linked to external loads {P] through the
stiffness matrix [K], can be symbolized as

[K]{X] = (P} (6)
where [K] is the symmetrical stiffness matrix of dimension
mxm.

Unlike the integrated force technique (eq. (2) or eq. (4)),
the stiffness method has no single expression that can be used
in calculating stress parameters from displacements by back
calculations. The equivalent of differentiation and a series of
numerical operations are required to generate the deformation
and force variables from the nodal displacements.

The MHOST Mixed-Iterative Method

The MHOST finite element code (refs. 3, 36, and 37)
implements a mixed-iterative method derived from an
augmented Hu-Washizu variational principle, and it employs
an equal-order interpolation of the fields, displacement, strain,
and stress, which are represented consistently as nodal variables.
The mixed equations of the general Hu-Washizu formulation
are augmented with the conventional stiffness equation and
solved indirectly; that is, the stiffness equation serves as a
preconditioner for the iterative recovery of the mixed solution.
This avoids the computational penalty of a direct solution of
the mixed equation system in which all three fields are treated
as simultaneous unknowns. The governing equations of the
MHOST mixed-iterative method are expressed as

Kl O )] (w]  [®-Ky
[0] [Gm] [ - Cm] T g‘} = {O} (7)
[Em] [ - Cm] [O] EU; {0}
where
[E,] = | [N,I7[Bldg (82)
(G, = | (NJT[DIINJa0 (8b)
[Cal = | NN (8¢)

The matrix [K] is the standard stiffness matrix as in equation
(6); [E,] is an integrated form of the discrete gradient matrix;
[G,.] is the material elastic constitutive matrix; and {C,] is
the strain projection matrix. The vectors {u], {e], {0}, and {P]
represent the nodal displacements, strains, stresses, and loads,
respectively. The matrices [N, and [N,] comprise the
interpolating polynomials (shape functions) for the strain and
stress fields, respectively.

The iterative process of the MHOST mixed-iterative strategy
is as follows:

Step 1: Initial stiffness solution

X} = [K]™'(P] (9a)
Step 2: Nodal displacement update
(X}t = ) + K17 {[P) - [E] ()] (%)
Step 3: Nodal strain projection
"t = [C)'(ElX)" ! %)
Step 4: Nodal stress recovery
{o)"*! = [C1 7 [Gl{g"" (9d)
Step 5: Evaluation of the nodal equilibrium residual
r)"*" = (P} — [E)(o)"*'(r}"* " = [P} - [E]7[o}"*"  (9e)

The process iterates on steps 2 to 5 to reduce the residual vector
defined by equation (9e) to an acceptable level.

The initial solution given by equation (9a) is the standard
stiffness solution, and in MHOST terminology, it is referred
to as the MHOST/uniterated solution. The converged solution
from steps 2 to 5 is referred to as the MHOS T/iterated solution.

Numerical Results

Numerical results for test problems obtained by different
methods are presented in this section. The attributes of the
finite elements used by the different software are presented
next.

MSC/NASTRAN Elements QUAD-4 and TRIA-3

Four-node QUAD-4 and three-node TRIA-3 elements of
MSC/NASTRAN were used in this study, with the displace-
ment degrees of freedom constrained in such a way as to
separately obtain the membrane and bending responses. For
bending response, the degrees of freedom are restricted to a
transverse translation and the two rotations; the QUAD-4,
then, is a 12-degree-of-freedom element, and TRIA-3, a



9-degree-of-freedom element. For membrane response, the
QUAD-4 element has eight degrees of freedom, that is, two
in-plane translations for each of its nodes.

ASKA Elements QUAD-4, TRIB-3, and TUBA-3

The ASKA finite element software also has a QUAD-4
element that was used for this study. The attributes of the
QUAD-4 element of ASKA are identical with respect to nodes
and degrees of freedom to those of the QUAD-4 element of
MSC/NASTRAN. Two triangular elements of the ASKA soft-
ware were used to examine the difference in performance of
higher order elements in finite element calculations. The
element TRIB-3 for flexural response has three degrees of
freedom per node, consisting of a transverse translation and
two rotations. Element TUBA-3 is a higher order triangular
element, which for bending response alone has six degrees
of freedom per node, consisting of one transverse translation,
two rotations, and three curvatures. As will be seen, the
increase from three to six degrees of freedom per node did
not significantly improve the accuracy in the cases considered.

GIFT Elements PLB4SP, MEMRSP, and PLB3SP

The elements of GIFT software used for this study were the
four-node plate-bending element PLB4SP, the three-node
plate-bending element PLB3SP, and the four-node membrane
element MEMRSP (the same element name is used for both
the IFM and the TFMD).

The TFM element PLB4SP has three force degrees of
freedom per node, consisting of one shear force and two
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Nodal displacements
Membrane element MEMRSP

moments, whereas the IFMD element PLB4SP has three dis-
placement degrees of freedom per node, consisting of a
transverse translation and two rotations. The PLB4SP element
for IFMD corresponds to the restrained QUAD-4 elements
of MSC/NASTRAN and ASKA. The force and displacement
degrees of freedom of the PLB4SP elements are depicted in
figure 3. Likewise, the restrained three-noded triangular
element TRIA-3 of MSC/NASTRAN and the TFM/IFMD
element PLB3SP are equivalent; TRIA-3 corresponds to
translation along the transverse direction and rotations along
the two in-plane axes, whereas the TFM element PLB3SP
represents nodal forces along those directions for the IFM
element. The MEMRSP element is a four-node rectangular
membrane element. For the IFM the MEMRSP element con-
tains two force degrees of freedom per node, representing the
two membrane forces along the coordinate axes, and for the
IFMD it has two displacement degrees of freedom per node.

MHOST Elements SH75 and PS151

The MHOST element SH7S5 used in this study is a four-node,
bilinear, isoparametric, quadrilateral element based on
Reissner-Mindlin plate and shell theory (refs. 3 and 38). It
has six displacement degrees of freedom per node (three
translations and three rotations). The element is formulated
in terms of nine generalized deformations, consisting of strains
and curvatures (e, €y, €, Yy Yo Yo Ko Ky Ky, and nine
generalized stress resultants (N,, N,, N, S,., Si., M, M,,
My, ).

The MHOST plane stress element PS151 is a four-node,
bilinear, isoparametric, quadrilateral element based on
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Figure 3.—Four-node membrane and flexure elements.



independent strain interpolation. The nodal variables for the
element include two displacements (i, u,), three strains (e,,,
€y Vyy), and three stresses (o, 0y, Tr';')-

Overall, the elements QUAD-4 and TRIA-3 of MSC/
NASTRAN, QUAD-4 and TRIB-3 of ASKA, and PLB4SP,
MEMRSP, and PLB3SP of GIFT are ‘“‘ordinary’’ elements
with three degrees of freedom for bending response and two
degrees of freedom for membrane response, and they can be
considered equivalent to one another. The elements TUBA-3
of ASKA, and SH75 and PS151 of MHOST can be considered
high-precision elements, either because their nodal degrees
of freedom exceed those of the normal elements or because
an iterative residue-controlling scheme is adopted as in the
MHOST/iterative scheme.

The test cases considered for this study are summarized as
follows.

Case I—Analysis of the Cantilever Beam

The cantilever beam, shown in figure 4, represents a typical
finite element test problem. The beam is made of an isotropic
material, and its parameters are as follows:

The theoretical solutions for the cantilever beam are as follows
(ref. 42): displacement at the tip of the beam is
6y = 0.18432 in. (10a)

shear force at any location along span x of the beam is

V,=2001b (10b)
and bending moment along span x of the beam is
M, = 20024 ~ x)Ib-in. (10c)

The beam was discretized as shown in figure 4(b). It was
analyzed by using the quadrilateral elements QUAD-4 of
MSC/NASTRAN, element MEMRSP of GIFT, and elements
SH75 and PS151 of MHOST. The computed results for dis-

- placement and stress were normalized with respect to the

theoretical solutions. The displacement and stress results along
with the equilibrium imbalance at the nodes of the finite
element model are presented in tables II to IX. However, nodal

Length, a, in. ..o 24 stresses obtained by stiffness methods (MSC/NASTRAN and
Depth, d, in. ..o 2 ASKA) were ambiguous (ref. 39); therefore these are not
Thickness, £, M. ..ooooviiiiiiii 0.25 included in table IV. The convergence of the tip displacement
Young’s modulus, E, KSi .....ooovnvininns 30 000 solution with respect to the number of finite elements in the
Poisson’s ratio, ¥ .......cocociiviiiiiiii 0.3 . discrete beam model is depicted in figure 5. The stiffness
Magnitude of transverse concentrated (eq. 6) and the pscudo-stiffness (eq. 3) coefficients for a
load at each of two free end nodes, Ib........... 100 12-element model are given in table X.
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(a) Geometry and boundary conditions.
(b) Finite element model.

Figure 4. —Cantilever beam analysis—Case 1.



TABLE II.—COMPARISON OF IFM, MSC/NASTRAN, AND MHOST

CANTILEVER BEAM NORMALIZED TIP DISPLACEMENTS®

Number of Normalized displacement
elements,
n GIFT/IFM | GIFT/IFMD | MSC/NASTRAN MHOST
MEMRSP | MEMRSP QUAD-4 SH75
Uniterated | Iterated
solution | solution
l 0.755 0.755 0.614 0.678 0.678
2 942 942 .858 .855 1.024
3 .977 977 .889 .888 955
4 .989 .989 .900 .9500 .945
6 .998 .998 .908 .908 927
8 1.000 1.000 911 911 921
10 1.002 1.002 912 912 919
12 1.002 1.002 913 913 918
6 | - | 914 914 914
24 0 e | - 914 914 914
48 | - | 914 914 914

FUnity represents analytical solution,

TABLE III.—COMPARISON OF IFM AND MHOST
ELEMENT PS151 CANTILEVER BEAM
NORMALIZED TIP DISPLACEMENTS®

Number of Normalized displacement
elements,
n GIFT/IFM | GIFT/IFMD MHOST
MEMRSP | MEMRSP PS151
Uniterated | Tterated
solution | solutionP
1 0.755 0.755 0.755 0.755
2 .942 942 942 986
3 977 977 977 .989
4 989 989 989 994
6 .998 998 .998 .999
8 1.000 1.000 1.001 1.001
10 1.002 1.002 1.002 1.002
12 1.002 1.002 1.003 1.003
6 | -— 1 -— 1.004 1.004
24 - ———— 1.004 1.004

BUnity represents analytical solution.

For one iteration.

TABLE IV.—COMPARISON OF IFM AND MHOST ELEMENT
SH75 CANTILEVER BEAM NORMALIZED
STRESSES AT SUPPORT?

Number of Normalized stress
elements,
n GIFT/IFM | GIFT/IFMD MHOST
MEMRSP MEMRSP SH75
Uniterated | Iterated
solution | solution
1 1.000 1.000 0.494 0.494
2 748 .995
3 .832 943
4 .874 .997
6 916 1.003
8 937 .985
10 950 .988
12 .958 .990
16 969 .982
24 v v 979 988

aUni(y represents analytical solution.




TABLE V.-—-COMPARISON OF IFM AND MHOST ELEMENT

PS151 CANTILEVER BEAM NORMALIZED
STRESSES AT SUPPORT®

TABLE VII.-COMPARISON OF IFM AND MHOST ELEMENT
PSI51 CANTILEVER BEAM EQUILIBRIUM
IMBALANCES AT POINT 4*

Number of Normalized stress
elements,
n GIFT/TFM | GIFT/IFMD MHOST
MEMRSP | MEMRSP PSI51
Uniterated | Tterated
solution | solution®
] 1.000 1.000 0.500 0.500
2 750 .838
3 .833 .881
4 .875 912
6 917 944
g .938 .960
10 .950 969
12 958 975
16 .969 982
24 ' ! 979 988

"Unily represents analytical solution,

For one iteration.

TABLE VI.—COMPARISON OF IFM AND MHOST ELEMENT
SH75 CANTILEVER BEAM EQUILIBRIUM

IMBALANCES AT POINT A?

Number of Equilibrium imbalance, percent
elements,
n GIFT/IFM | GIFT/IFMD MHOST
MEMRSP | MEMRSP PS151
Uniterated | Iterated
solution | solution®
2 0 0 0 —5.847
3 1.807
4 1.130
6 0.921
8 .833
10 752
12 .682
16 570
24 4 L 4 424

#Unity represents analytical solution.

For one iteration.

TABLE VIII.-IMPROVEMENT IN MHOST ELEMENT
SH75 CANTILEVER BEAM SOLUTION

Number of Equilibrium imbalance, percent
elements,
n GIFT/IFM | GIFT/IFMD MHOST
MEMRSP | MEMRSP SH75
Uniterated | Iterated
solution | solution®
2 0 0 49.839 | ———-
3 12478 | ——-
4 8.322 0.104
6 4.994 518
8 3.567 .380
10 2.774 312
12 2.270 263
16 1.664 .825
24 v L 1.085 518

Number of Percentage Computational
elements, improvement penalty
n —
Support Tip Number of | Normalized
stress | displacement | itcrations | extra time
P o - 0 —
2 24.70 16.90 2 1.877
3 11.10 6.70 2 1.022
4 12.30 4.50 3 2.400
6 8.70 1.90 5 3.491
8 4.80 1.00 2 2.00
10 3.80 .70 2 2.04
12 3.20 .50 2 2.037
16 130 | ———- i 1.650
24 | - | 1 1.000
Theory 100.0 100.0 — ——-

aUnily represents analytical solution.

For onc iteration




TABLE IX.—IMPROVEMENT IN MHOST ELEMENT
PS151 CANTILEVER BEAM SOLUTION

Number of Percentage Computational
elements, improvement penalty
n
Support Tip Number of | Normalized
stress | displacement | iterations | extra time
1 -— - 0 —
2 8.8 4.4 I 1.20
3 4.8 1.2 I 1.33
4 3.7 5 I 1.23
6 2.7 .1 I 1.33
8 2.2 - I 1.33
10 1.9 -— 1 1.27
i2 1.7 -— 1 1.29
16 1.3 -— 1 1.26
24 9 -— 1 1.37

TABLE X.—CANTILEVER BEAM STIFFNESS MATRIX
COEFFICIENTS FOR 12-ELEMENT MODEL OF
STIFFNESS MATRIX DIMENSION (48,48)

Stiffness GIFT/IFMD | MSC/NASTRAN | Difference,
matrix (MEMRSP) (QUAD-4) percent
coefficients,
K,
(48th row)
Kigoi 10 Kygo | 0 0 0
Kus21 —1.339x10° | —1.339x 108 0
Kis.22 ~2.157 ~2.095 2.874
Kus 23 ~.103 -.103 0
Kug —1.964 -2.026 -3.157
Kigos 0 Kygas| O 0 0
Kyg 45 134 103 23.134
Kug 46 714 652 8.863
Kug a7 1.339 -1.339 0
Kug.a5 3.407 3.468 -1.790

11—
1.002
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Number of elements in model, n

Figure 5.—Convergence of the cantilever beam tip displacement.

(b)

(a) Geometry and boundary conditions.
(b) Finite element model.

Figure 6.—Clamped rectangular plate analysis—Case IL.

Case II—Analysis of a Clamped Rectangular Plate

The rectangular plate under a transverse concentrated load,
shown in figure 6, represents another typical finite element
test problem. The plate is made of an isotropic material, and
its parameters are as follows:

Length, @ in. ..o 24
Width, b, Do 12
Thickness, A, i c.ooooriiiiiii 0.25
Young’s modulus, E, ksi ........oocoiinin 30 000
POISSON’S TAtIO, ¥ vvvvrreeivrnecrrairariorananranannaessn 0.3
Magnitude of transverse concentrated

load at center, P, Ib.....ooooiiiiiiiiiinns 1 000

The plate is clamped, that is, displacements and rotations are
restrained, along all four edges. The theoretical solution for
the transverse displacement at the center (ref. 41) is

85,=2.42x107% in. (1n



TABLE X1.—COMPARISON OF IFM, MSC/NASTRAN, AND MHOST
SH75 NORMALIZED CENTER DISPLACMENTS OF
A CLAMPED RECTANGULAR PLATE

Number of Normalized displacement
elements,
(nxm) GIFT/IFM | GIFT/IFMD | MSC/NASTRAN MHOST
PLB4SP PLB4SP QUAD-4 SH75
Uniterated | Iterated
solution | solution
4 2x2) 0.825 0.825 0.184 0.006 0.006
8 (4x2) .987 .987 .306 .010 010
[6 (4x4) .988 .988 .859 12 726
32 8x4) 1.000 1.000 .945 .833 .858
64 (8x8) 1.000 1.000 .997 953 .982

TABLE XII.—MHOST SH75
NORMALIZED CENTER
DISPLACMENTS FOR
SIMPLY SUPPORTED
RECTANGULAR PLATE

Number of Normalized
elements, displacement
(nxXm)
Uniterated | Tterated
solution | solution
4 (2x2) 1.279 | -——-
8 (4x2) 739 0.818
16 (4x4) .806 .997
32 (8x4) .799 .983
64 (8x8) 812 913

The quadrilateral elements of the various software (i.e.,
PLB4SP of GIFT, QUAD-4 of MSC/NASTRAN, QUAD-4
of ASKA, and SH75 of MHOST) were used to solve the
problem. In this case, only the center transverse displacements
are compared for the various methods. The normalized values
are given in table XI, and the MHOST results obtained for
the same plate, but with simply supported boundary conditions,
are given in table XIL

Case III—Analysis of a Clamped Square Plate by
Quadrilateral Elements

A clamped 24-in. square plate, with other parameters
identical to test Case II, was also analyzed by the quadrilateral
elements of MSC/NASTRAN, ASKA, GIFT, and MHOST
as in Case II. The moment resultant at point B (see fig. 6)
as obtained by the different methods is given in table XIII and
depicted in figure 7. The transverse center displacements
computed by the various methods were qualitatively graded
by the criterion proposed by MacNeal and Harder (ref. 42).
In their scheme, results are graded as follows on the basis of
errors in the nodal displacements:

Grade A less than 2 percent error

Grade B greater than 2 but less than 10 percent error

TABLE XIII.—COMPARISON OF IFM, MSC/NASTRAN, AND
MHOST SH75 NORMALIZED BENDING MOMENTS

Number of Normalized bending moment
elements per
quarter plate | IFM/IFMD | MSC/NASTRAN MHOST, SH75
PLB4SP QUAD-4
Uniterated | Tterated
solution solution
I (Ix1]) 1.200 0 0 0
4 (2x2) 994 787 .620 1.1137
9 (3x3) 995 .875 .652 716
16 (4x4) 995 .931 732 1.034
25 (5x95) ——— — 764 .907
36 (6x6) -— —— 796 971
49 (Tx7) — ———— 811 .939
64 (8x8) -— ———- 843 .970
81 (9x9) -—— - 860 .970
100 (10x 10) —— - .860 .970
400 (20x20) — ———= .923 .986

Grade C greater than 10 but less than 20 percent error

Grade D greater than 20 but less than 50 percent error

Grade F  greater than 50 percent error

For Case III, the grades achieved by the different methods
are presented in table XIV, and the convergence trend of the
center transverse displacement with respect to the number of
elements in the model is depicted in figure 8.

Case IV—Analysis of a Clamped Square Plate by
Triangular Elements

The computations for the clamped square plate of Case 11
were repeated with the triangular plate-bending elements
PLB3SP of GIFT, TRIA-3 of MSC/NASTRAN, and TRIB-3
and TUBA-3 of ASKA. The TUBA-3 element of ASKA is
a higher order element, as described earlier. Results obtained
from the different methods were again qualitatively graded
according to the MacNeal and Harder criterion. The grades
are presented in table XV, and the center transverse
displacement convergence trend is depicted in figure 9.
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Figure 7.—Convergence of moment for the clamped plate.

TABLE XV.—REPORT CARD FOR TRIANGULAR ELEMENTS USED
TO SOLVE CLAMPED SQUARE PLATE CENTER DISPLACEMENTS

TABLE XIV.—REPORT CARD FOR QUADILATERAL
ELEMENTS USED TO SOLVE CLAMPED SQUARE
PLATE CENTER DISPLACEMENTS

Number of | GIFT/IFM | MSC/NASTRAN |  ASKA ASKA
Number of | GIFT/IFM | MSC/NASTRAN | ASKA elements | GIFT/IFMD (TRIA-3) (TRIB-3) | (TUBA-3)
elements | GIFT/IFMD (QUAD-4) (QUAD-4) for full (PLB3SP)
for full (PLB4SP) plate
plate
(nxm) 4 B F — F
8 A D F F
4 (2x2) A F F 16 A C - -
16 (4x4) A B B 32 - B C D
36 (6%6) A A - 128 - - B B
64 (8x8) — A —
100 (10 10) - — — Method
= Timoshenko
Method —O0— GIFTAFM PLB3SP
—— Timoshenko —{}— ASKA TRIB-3
—O— GIFT/IFM PLB4SP —A— ASKATUBA-3
—— ASKA QUAD-4 = —0O— MSC/NASTRAN TRIA-3
o 125 —&—  MSC/NASTRAN QUAD-4 = 1B
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- o E 100 ——————spofp——————-~
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Figure 9.—Rate of convergence for triangular elements used 1o calculate
clamped square plate transverse center displacement.

Figure 8.—Rate of convergence for rectangular elements used to calculate
clamped square plate transverse center displacement.



TABLE XVI.—REPORT CARD FOR IFM
RECTANGULAR ELEMENTS WITH
DIFFERENT ASPECT RATIOS

Number of | Aspect | Clamped | Simply
elements ratio | boundary | supported
for full boundary
plate
{nxm)
4 (2x2) 1.00 A A
4 (2x2) 1.20 A —
1.40 A —
1.60 A —
1.80 B —
2.00 B —
8 (2x4) 2.00 A —
16 (4x4) 1.00 A A

TABLE XVII.—REPORT CARD FOR HYBRID METHOD
RECTANGULAR ELEMENTS ON CLAMPED
SQUARE PLATE

Number of | GIFT/IFM | Mixed method | Hybrid method
elements | GIFT/IFMD | MHOST SH75 | HMPLS [33]
for full PLB4SP
plate
(nxm)
4 (2x2) A F F
16 (4x4) A C C
64 (8x8) A B A

Case V—Analysis of Rectangular Plates With Various

Aspect Ratios

Rectangular plates identical to Case II, with both simply
supported and clamped boundary conditions and also with
different aspect ratios, were examined with the PLB4SP
element of the GIFT program. Results are given in table XVI.

Case VI—Analysis of a Clamped Square Plate by
the Hybrid Method

This test problem is identical to that of Case IV. The plate
was examined with the quadrilateral elements of GIFT and
MHOST and the results compared to the hybrid method
solution of Chang from element HMPLS (ref. 33). The
qualitative grades achieved by the various methods are given
in table XVII.

Discussions

Uniqueness of Elasticity Solution

In the strict mathematical sense, elasticity solutions are
unique, that is, for a given force field there is a unique
displacement state and vice versa. The IFM and IFMD, being
theoretically equivalent, comply with the uniqueness principle

(i.e., both IFM and IFMD yield the same solutions; see eq. 5).
Although initially the IFM and IFMD results are separately
depicted (tables IT to XI), thereafter no distinction is made
between IFM and IFMD as far as displacement or force
solutions are concerned.

Equilibrium Imbalance at the Nodal Points

To examine the extent to which the different analysis
methods satisfy the equilibrium conditions at the nodal points
of a finite element model, the problem of the cantilever beam
in Case I is considered. The normalized equilibrium imbalance
at point A (see fig. 4) is defined as

F, — Fp) x 100
I, = Fr ) (12)
Fo

where F; is the member force at point A from the element
to the left, Fy is the member force at point A from the
element to the right, and F is the theoretical value for the
force at point A.

Tables VI and VII show the error (equilibrium imbalance)
at point A of the beam model as obtained by GIFT element
MEMRSP and MHOST elements SH75 and PS151. The solu-
tions that were obtained by the integrated force methods do
not exhibit equilibrium imbalance. The error at point A from
the MHOST uniterated solution decreases with an increase in
the number of elements in the discretization. It is about 50
percent for the model with 2 elements, but about 1 percent
for a relatively fine model with 24 elements. The results of
the MHOST iterative scheme, wherein the equilibrium
imbalance is reduced by a relaxation process, are given in
tables VI and VII. Note that for this case the MHOST iterated
scheme has virtually eliminated the error with one iteration.
The uniterated scheme of MHOST element PS151 does not
exhibit any error at point 4; however, the iterated scheme
induces minor equilibrium imbalances at that node.

For the plate flexure problems, the nodal equilibrium
imbalance is more persistent, especially for the rotational
degrees of freedom. For Case II, with a 64-element (8 x8)
model, an imbalance of zero is observed in the solution
obtained by the MSC/NASTRAN QUAD-4 element for the
transverse translational degree of freedom. However, for the
rotational degree of freedom the nodal imbalance is of the order
of magnitude of the reactions developed at the boundary nodes.
The solution by the IFM (GIFT, element PLB4SP) for this
case does not exhibit any error for either translational or
rotational degrees of freedom.

Attributes of the Stiffness and Pseudo-Stiffness Matrices

The attributes of the stiffness and IFMD pseudo-stiffness
matrices, given by equations (6) and (3) respectively, are
compared for a relatively fine model (i.e., 12 elements) of
the cantilever beam test problem. Selected global stiffness
coefficients of the MSC/NASTRAN QUAD-4 element and



the pseudo-stiffness coefficients of the GIFT MEMRSP
element are given in table X. Both the stiffness matrix [K]
of the MSC/NASTRAN QUAD-4 element with membrane
response only and the pseudo-stiffness matrix [K,] of the
GIFT MEMRSP element are symmetrical—of 8 x 8 dimension.
Both global stiffness matrices retain similar sign and null
characteristics. Only the magnitudes of the nonzero coefficients
differ; that is, with the exception of two clements, the magni-
tudes of the other 14 elements of the 48th row of the global
stiffness matrix [K] are higher than those of the pseudo-stiffness
matrix [K;]. In an overall sense, the stiffness matrix appears to
be somewhat stiffer’” than the pseudo-stiffness matrix.

Convergence Trends for Membrane Response

The normalized tip displacements for the cantilever beam
of Case I, obtained by GIFT MEMRSP, MSC/NASTRAN
QUAD-4, and MHOST SH75, are presented in table II. The
displacements are normalized such that unity represents the
theoretical solution. For Case I, tip displacement convergence
is achieved by GIFT MEMRSP for models with four or more
elements. Both MSC/NASTRAN QUAD-4 and MHOST
uniterated SH75 converge to approximately 92 percent of the
theoretical solution. For fewer elements (less than 8 elements
in the model), the MHOST iterated element-SH75 solution is
superior to the MSC/NASTRAN and MHOST uniterated
solutions. However, neither MSC/NASTRAN QUAD-4 nor
MHOST SH75 uniterated or iterated converge at any closer
than 92 percent of the closed-form solution, even for a fine,
48-element model. The displacement convergence trends of
GIFT MEMRSP and MHOST PSi51, given in table III, are
identical.

The computed bending stresses at the support of the
cantilever beam (point A in fig. 4) for different discretizations,
which were obtained by using the MEMRSP element of GIFT
and the SH75 and PS151 elements of MHOST, are given in
tables IV and V. The results are normalized with respect fo
the theoretical bending stress, which is given by

My
Otheoretical = T (13)

where M is the bending moment at the support (4800 in.-Ib),

y is the distance from neutral plane (1.0 in.), and [ is the
3

t
moment of inertia E (=1/6 in.*.

Both the IFM and IFMD GIFT e¢lement MEMRSP yield
identical results. Furthermore, the stress result converges for
the first model, which has a single element. The mixed method,
MHOST, exhibits some error in the computed stress, even for
fine models; the MHOST uniterated 24-element SH75 model
has an error of 2.1 percent, which is reduced to 1.2 percent
by the MHOST iterated solution. The MHOST PS151 results
show more rapid convergence, but still require a 16-element

model to achieve an error of less than 2 percent. The com-
putational penalty of the MHOST iterated solution (normalized
to the MHOST uniterated solution) is shown in table VIII for
element SH75 and in table IX for element PS151. The addi-
tional computational time required for the iterated solution is
one to two times that required for the uniterated solution.

Convergence Trends for Flexure Response

The displacements calculated for the clamped rectangular
plate of Case TI are presented in table XI. For this problem,
GIFT element PLB4SP achieved an accuracy of 98.7 percent
for a model with 8 elements (4 X2). For a coarser model with
only 4 elements (2 x2), the error is about 17.5 percent. The
solution obtained by MSC/NASTRAN QUAD-4 required
64 elements to achieve an accuracy of 98 percent. For a
64-element SH75 model, the MHOST uniterated solution
achieved an accuracy of about 96 percent; the MHOST iterated
solution is marginally more accurate. The MHOST results for
a simply supported rectangular plate, given in table XII, show
good convergence trends, with minor oscillations for the
uniterated case.

For the clamped square plate under transverse concentrated
load at the center (see table XIV), the ASKA QUAD-4 element
achieved results no better than a grade of B, even for a model
with 100 elements. The MSC/NASTRAN QUAD-4 element
required just 36 elements to produce a “‘grade A’ solution.
The GIFT PLB4SP-element solution for the most coarse
model, four elements, achieved a grade of A.

The convergence trends of the clamped rectangular plate
bending moment M, at point B (fig. 6), as calculated by GIFT
PLB4SP, MSC/NASTRAN QUAD-4, and MHOST SH75,
are presented in table XIIT and in figure 7. Note that with the
GIFT PLB4SP element, convergence for M, at location B
occurs for the second model, which has four elements per
quarter plate; the first model, with one element per quarter
plate, exhibited a bending moment about 20 percent higher
than Timoshenko’s theoretical solution. The MSC/NASTRAN
QUAD-4 bending moment shows an error of about 7 percent
in the fine mode!l with 16 elements per quarter plate. The
MHOST uniterated solution exhibits about a 7-percent error
for the model with 400 elements per quarter plate (table XIII),
but for the same discretization, the MHOST iterated version
shows a 2-percent error.

The influence of aspect ratio on the convergence charac-
teristics of a plate flexure problem was examined by the GIFT
PLB4SP element. Results, presented in table XVI, show that
the accuracy decreases as the aspect ratio of the element
increases from unity (square form); however, PLB4SP retains
an A grade for the four-element model until the aspect ratio
reaches 1.6. For an aspect ratio of 2.0, the whole plate required
eight elements to secure a grade of A.

The square plate with clamped boundary was analyzed with
triangular elements PLB3SP of GIFT, TRIA-3 of MSC/
NASTRAN, and TRIB-3 and TUBA-3 of ASKA. Results are
presented in table XV and figure 9. For element PLB3SP, the
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result is discernible from the analytical solution for the first
model, which has four elements in the whole plate; even so,
the results display engineering accuracy. The next model, with
eight elements, converges, thereby achieving a grade of A.
None of the MSC/NASTRAN QUAD-4 nor the ASKA
TRIB-3 and TUBA-3 results could secure a grade of A, even
for a finely discretized model with 128 elements, as shown
in table XVI.

The displacement convergence characteristics of the IFM
and the MHOST mixed and hybrid formulations for a clamped
square plate are given in table XVI. The GIFT PLB4SP
secured a grade of A for a 4-element model, whereas the
HMPLS hybrid element (ref. 33) secured the same grade only
with a 64-element model. The best grade achieved by the
MHOST SH75 element for this problem was a B.

Size of Finite Element Models

To solve structural mechanics problems, current finite
element applications employ models with a large number of
elements and degrees of freedom. Such models are henceforth
referred to as large models. Although larger models (which
correspond to smaller finite elements) are presumed to yield
more accurate solutions, in a strict sense this would be true
only when element size shrinks to a point, or the displacement
degrees of freedom are infinite, which is beyond computer
capability. The question then is, How small should the finite

elements be in a particular region of a structure in order to’

achieve an acceptable level of accuracy in the prediction of
stresses and deformations? This question has been researched,
and techniques such as adaptive mesh refinements have been
developed. Still, no general answer exists, and mesh refine-
ment is largely governed by experience and intuition. A related
issue is the large finite element model (with respect to degrees
of freedom) whose solution requires thousands of routine

Grade Error,
percent

<2
>2but<10
> 10but <20
>20but <50
> 50

MmMooOw>»
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calculations. Such a model can be handled with intensive
numerical calculations. This is possible because computation
has become relatively inexpensive owing to advancements in
digital computer technology and because accuracy in numerical
calculations has improved. However, when miniaturization is
the desirable trend in other disciplines (such as computer
science, communication engineering, etc.) should large finite
element models from which solutions are extracted by intensive
computation be pursued? Perhaps a more appropriate course
of action would be to search for accurate modeling techniques
that can generate reliable responses with fewer degrees of
freedom. The search for such models could be the goal of the
next generation of finite element technology.

The issue of model size in finite element calculations is
explored by taking the examples of the cantilever beam (Case I)
and plate flexure (Case II) problems. The finite element models
for the two cases, analyzed by different methods, are depicted
in figures 10 and 11. For the cantilever beam, only four GIFT
MEMRSP elements were required to secure a grade of A,
whereas both MSC/NASTRAN QUAD-4 and MHOST SH75
elements could secure only of grade of B, even for a fine model
(see fig. 10). For the plate problem, eight GIFT PLB4SP
elements were required to achieve a grade of A. To achieve
the same grade, 64 MSC/NASTRAN QUAD-4 elements were
needed, whereas 64 MHOST SH7S elements could secure only
a grade of B. (Note: For both membrane and flexure response,
the GIFT, MSC/NASTRAN, and MHOST elements are
equivalent. See NUMERICAL RESULTS.) Overali, the IFM
required a much smaller model, and the stiffness and mixed
methods a larger model, to achieve an acceptable level of
convergence.

Timoshenko used Ritz’s displacement method to solve a
plate flexure problem with fixed boundary conditions,
obtaining accurate solutions with few terms in the series. For
the square-plate convergence, Case III, the IFMD required

o [ o
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Figure 10.—Number of membranc response clements used for various methods.

» o



8-Element model

64-Element model

IFMAFMD secures grade A MSC/NASTRAN secures grade A

MHOST secures B

.Figure 11.—Number of flexural response elements used for various methods.

four elements with three displacement unknowns. The same
problem required 36 MSC/NASTRAN QUAD-4 elements,
which corresponds to 75 displacement unknowns. Likewise,
64 or more ASKA QUAD-4 or MHOST SH75 elements, or
64 HMPLS hybrid elements, all of which correspond to more
than 100 variables, were required for convergence. For this
plate problem, only IFMD and Ritz’s convergence
characteristics are similar; that is, both require a similar
number of unknowns to achieve convergence.

All of the finite element analysis methods (the IFM, IFMD,

stiffness method, hybrid method, and mixed method) are
approximate formulations. The solutions obtained by these
methods have to be qualified on the basis of indirect criteria
such as (1) satisfaction of the equilibrium equations, (2) com-
pliance of the strain compatibility conditions, and
(3) elimination of discretization errors by way of the finite
element model refinements. The IFM attempts to bestow
balanced emphasis on criteria (1) and (2), and it achieves
criterion (3) by way of mesh refinement. In other words, all

three criteria that qualify the solution (equilibrium,
compatibility, and mesh refinement) are incorporated in the
IFM; consequently, a converged solution should be accurate
and reliable. None of the other formulations (stiffness, hybrid,
and mixed) explicitly impose the strain compatibility condition
(see figs. 1 and 2); therefore, in a strict sense, there is no
guarantee that solutions generated by these methods will
always be correct.

Concluding Remarks

Overall, on the basis of the examples analyzed, the following
conclusions can be drawn:

1. The integrated force method is superior to the stiffness,
mixed, and hybrid methods. The latter three methods all
performed at about the same level.

2. Most potentials of the stiffness, hybrid, and mixed
methods have been exploited; these methods probably have
reached the plateau in their development. The integrated force
method has now been established and its potential remains to
be explored.

3. Since all of the finite element methods are approximate
in nature, we recommend generating solutions both via the
integrated force method and the stiffness method and then
comparing them, rather than qualifying the results by
successive mesh refinements of any one formulation.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, June 12, 1991



Appendix A
A Plate Flexure Example

The solution procedure of the integrated force method (IFM)
is tHustrated through the example of a flat cantilever plate in
flexure (see fig. 12). The plate is made of an isotropic material,
has a Young’s modulus E of 30 000 ksi, and a Poisson’s ratio
v of 0.3. The plate is discretized into two rectangular elements,
each of which has three force and three displacement degrees
of freedoms per node; the force variables are two moments
and a shear force, and the displacement variables are two
rotations and a transverse translation (see fig. 3).

Solution by the Integrated Force Method

To analyze the flat cantilever plate by the IFM requires that
three matrices be generated: the equilibrium matrix [B], the
flexibility matrix [G], and the compatibility matrix [C]. The
generation of the matrices is presented in symbolic form to
avoid algebraic complexity.

Equilibrium Matrix

The element equilibrium matrix [B,] is the transformation
that maps nodal Ioads onto the internal forces at the element
level. The element equilibrium matrix is a rectangular matrix;
its rows correspond to the displacement degrees of freedom
and its columns correspond to independent force variables.
The consistent equilibrium matrix is generated from the varia-
tional functional of the IFM. The portion of the functional
(ref. 5) that yields the matrix [B,] can be written as

3w
—— Jdx dy (AD
dxdy

3w

(e

3w
Py + M,

Uph= ﬁ

+ M,

where Uy, is the strain energy in flexure; M,, M,, and M,,
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(a) Displacement degrees of freedom.
(b) Concatenated displacement.
(¢) Element matrices.

Figure 12.—Flat cantilever plate in flexture.



3w 9%w a*w
are the plate-bending moments; and —, —, and ——,
are the plate curvatures. ax= dy dxdy

The plate domain € is defined in a rectangular Cartesian
coordinate system (x,y).

The discretized internal energy for the rectangular element
is expressed as

Ug, = (X7 [BJ{F] (A2)

where Uy, is discretized internal energy for flexural
response, [B,] is the plate flexure element equilibrium matrix,
{X] is the displacement vector of the element, and {F} is the
force vector of the element.

The expression to generate a consistent equilibrium matrix
[B,] is obtained by equating the strain energies given by
equations (Al) and (A2):

(Jph = Udis (A3)

The generation of the consistent clement equilibrium matrix
[B,] requires both the displacement and force distributions in
the plate domain. For the displacement field, a polynomial
shape function is chosen in terms of 12 unknowns that satisfy
the normal plate flexure continuity conditions:

w(x,y) = a + ax + ogy + agx’ + asxy + agy”’ + apx’
+ ozgxzy + ou,xyz + oqo)'3 + o ,x3y + ozlzxy3
(A4)

The 12 constants (c,qs,...,02) of the polynomial are
linked to the 12 nodal displacement degrees of freedom
(X,.X;,....,X;2) of the element by following standard
techniques.

Two mandatory requirements of the assumed force field at
the element level are (1) the force field must satisfy the
homogeneous equilibrium equation, here, the platc bending

o [a*M, ’M, M,
equation >+ —5 +2 ==
dx* dy dxady

components Fy (see eq. (A5)) must be independent of one
another. The latter condition ensures the kinematic stability
of the element. It is not mandatory that the assumed forces
satisfy the field compatibility conditions a priori.

The rectangular element can have 12 nodal forces—2
moments and a shear force for each of its 4 nodes. Overall,
these 12 force components must satisfy the 3 kinematic
equilibrium conditions; in consequence there are only 9
independent forces.

The moment functions of the rectangular element are defined
in terms of the nine independent force components as

0); and (2) the force

M. =F + Fx+ Fyy+ Fxy (ASa)

M,=Fs+ Fox + Fyy + Fyxy (A5b)

M

y

=F, (A5¢)

The normal moments vary linearly within the element,
whereas the twisting moment is constant. The constant twisting
moment M,, will produce interelement discontinuities, which
of course, if required, can easily be alleviated by a higher order
polynomial. The assumed moments satisfy the previously
stated mandatory requirements.

The element equilibrium matrix is obtained by substituting
the moments from equation (AS) and the displacements from
equation (A4) into the energy expression given by equations
(A1) to (A3) and carrying out the integration. The rectangular
element equilibrium matrix [B,] is of dimension 12X9; its
rows correspond to the 12 unknown displacements
X, = WX, = 0, X3 = 6, for nodes i = 1 to 4) shown in
figure 12, and its columns correspond to the 9 independent
force unknowns given by equation (AS5).

Flexibility Matrix

The element flexibility matrix [G,] relates the deformations
(8] to forces (F} as (8] = [G,]{F}. The flexibility matrix is
symmetrical, of dimension 9X9. It is obtained by following
standard techniques to discretize the complementary strain
energy U, which is given as

= (1/2){F)7[G,]{F} = (1/2D)£ [Mf + M2 — WM M,
+ 1+ V)Mf_\] dxdy  (A6)

where D is the flexural rigidity defined as D = (Eh*/12), E
is Young’s modulus, » is Poisson’s ratio, and h is the plate
thickness.

Substituting into equation (A6) the moments M,, M, M,,, in
terms of forces (F,Fs,...,Fy) as given by equation (A5), and
integrating yields the 9 x9 symmetric flexibility matrix [G,].

Compatibility Matrix

For simplicity, a restrictive procedure to derive the
compatibility conditions, which is adequate for the plate flexure
problem, is given here. Generating the compatibility matrix,
unfortunately, is not as straightforward as generating the
equilibrium or the flexibility matrices. Refer to references 8,
10, and 11 for the generation of the compatibility conditions
for finite element analysis.

The procedure presented here involves direct discretization
of the continuum plate boundary compatibility conditions by
using Green's theorem (ref. '43) and Galerkian’s technique.
The equation form of the compatibility conditions depends on
whether such conditions are written for the field or the boundary
of the elastic domain, since the compatibility principle is unique.
The field compatibility conditions are incorporated into the
field integral portion of Green’s theorem, and the correspond-
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ing boundary compatibility conditions are recovered from the
boundary integral portion. The Green’s theorem in two
dimensions can be written as

S S [a_qb + %] dxdy = é‘) [¢0 + Yym]de (A7)
gl 0x Oy T

where £and m are the direction cosines to the outward normal
to the boundary curve. The symbols ¢ and y represent
continuous and differentiable functions of coordinates x and y.

The plate flexure problem is two-degree indeterminate since
it has three unknown moments (M, M,,M,,) but only one field
equilibrium equation, which is given by

M, M, oM,
S+ 42— =g (A8a)
dx dy dxdy

where ¢ is the transverse distributed load. The problem has
two field compatibility conditions (refs. 5 and 17) given by

oM, —vM,) (1 +v)oM,
ax dy

0 (A8b)

oM, — vM,) (1 + v)aM,,

=0 A8c
ady ax (%)

When Green’s theorem is applied to each of these two field
compatibility conditions, two boundary compatibility
conditions are recovered:

M, — M) - (1 +v)M,m=0 (A9a)

M, —vM)m — (1 = v)M =0 (A9b)
The conditions, specialized for the boundaries of the
rectangular element, have the following forms:

I. Along the edges where X = constant, f= 1, and m = 0,

M, —vM,) =0 (Al10a)

M) =0 (A10b)

2. Along the edges where Y = constant, =0, and m = 1,
M, —vM,) =0 (Alla)

(M) =0 (Al1D)

The element compatibility conditions in symbolic form are

obtained by substituting the moment functions (eq. (A5)) into
the boundary compatibility conditions (eq. (A11)).

20

Along the edge where Y = constant, £ =0, and m = 1, the
condition given by equation (Alla) yields two equations:

(F) + F3b) —v(F3 + F3b) =0 (Al2a)
(Fy + Fyb) —v(Fg + Fgb) =0 (A12a)

The condition given by eq. (A11b) yields one equation:
My=0 (Al2¢)

The three compatibility conditions given by equation (A12)
are representative only in the context of discrete finite element
analysis, because lumped nodal quantities and Galerkian
integration has not been carried out. The intention here is to
demonstrate that there are three compatibility conditions per
edge of the element. The element compatibility condition for
the edge can be written in matrix form as

[C.]{F} = (0] (A13)

where [C,] is the 3 X9 element boundary compatibility matrix
for the edge where Y is constant.

Similar compatibility conditions can be written for the
element boundary where X is constant, { = 1, and m = 0. The
boundary compatibility equation given by equation (A13) is
in terms of nine independent forces {FJ; it represents the
composite compatibility conditions ([C][G]{F}, where
[C.] = [CH[G]), of the IFM for finite element analysis. In the
computer code GIFT, however, the compatibility matrix [C]
and the flexibility matrix [G] are generated separately, and
their product is explicitly determined. The compatibility
conditions given by equation (A13), and those obtained by
generating [C] and [G] separately and taking their product
[C][G], will have similar characteristics such as bandwidth
and sparsity, but may be different with respect to some scaling
factors.

Integrated Force Method Equations for the Problem

Each element has 9 independent unknown forces; therefore

F.l
the 2-element discretization has 18 force unknowns i%} ,
23

which represent the concatenation of the element forces as

FJ7
{(_‘ =<F| :F]?I,..‘,F|2=F9el-'F|0
lFZ}

= F,....Fig = Fy,) (Al4)

where the subscript iej indicates the jth force of element j.
The governing equation [S}{F] = (P] for the problem is
presented next, in equation (A15). Equation (A15) contains

Rz



a total of 18 equations, consisting of 12 equilibrium equations
(EE) and 6 compatibility conditions (CC), from which the 18
unknowns can be computed:

- r - - - F] 6R| =O
3CC [Cli48 F; *
-_ : 6R3=O
'y X] X| i 7 L4 P|
. [B]l . [
[ ] ® L ]
. * L
12EE X(, - - X(, [Bh < = .
. ] P,=P
® [ 4
® [ 4
* Py=P
[ ®
v Xl i P
- - 6R|6=O
3cC [IC]I(‘I)] [[C]3(‘1) ¢
. L =~ F]g 6R|8=0
(A15)
where
[B]; equilibrium matrix of dimension 12 x9
for element i
P,P;,...,.P; 12-component mechanical loads
(6Rl !BRZﬂaR_%
5R¢.0R7,0R 3) 6-component initial loads
[Cliss edge AB elemental compatibility matrix

of dimension 39 for element |
The 12 equilibrium equations which link the 18 unknown

F

forces {:?'3-} to the 12 external loads [P} are assembled
K2

from the element matrices. The rectangular system of 12

equilibrium equations has the form

F
[(B,]:[B]] {u} = (P} (A16)

(Fa)

The 12 system equilibrium equations given by equation
(A16) occupy the central portion in the IFM governing
equations given by equation (A15).

Because there are 18 force unknowns but only 12 equilib-
rium equations are available, the plate flexure problem requires
6 compatibility conditions. These six conditions can be iden-

tified as the three compatibility constraints along the plate’s
fixed boundary AB for element 1 and three deformation balance
conditions for the boundary CD that is common to both
elements 1 and 2 (fig. 12).

The three compatibility conditions along boundary AB can
be written in symbolic form as

[C\IF,j=0 (AlT)

The matrix [C,] has a dimension of 39 and is obtained by
appropriate substitution of direction cosines of equation (A13)
for element 1. These three compatibility conditions occupy
the top position in the IFM governing equation depicted in
equation (A15).

The three compatibility conditions for the common boundary
CD are given by equation (A18). The composite compatibility
matrix [[C,]:[C,]] has a dimension of 3x 18 and is obtained
from element matrices with appropriate assembly for the edge
CD that is common to elements 1 and 2 (see fig. 12).

. {F_'} —
[[C]:[Ca1] {ng}} O] (A18)

The compatibility condition along interface CD is at the
bottom location in the IFM governing equation (eq. (A15)).
The solution of this governing equation, which contains
12 EE’s and 6 CC’s, yields the 18 unknown forces. The 12
displacements can then be obtained from the forces by back
substitution into equation (2) of the IFM.

The two-element, finite element solution for the plate flexure
problem is given in table XVIII along with the strength of
material beam solutions, which are obtained from a beam
idealization. Note that the two-element solution yields correct
moments that are continuous along the interelement boundary
CD. The maximum transverse displacement obtained for the
two-clement model has only 4.5-percent error compared to
the theoretical beam solution.

Solution by the Stiffness Method

The cantilever plate flexure problem was also solved by the
stiffness method for the purpose of comparison. The stiffness
equations are well-known but complicated; therefore, as
before, the analysis is carried out in symbolic form. To estab-
lish parallelism between the integrated force and the stiffness
methods, a slightly different procedure from the normal is
followed; the purpose will become evident in the process of
the solution. For the problem, a displacement vector (X} of
dimension 24, which represents the concatenation of the
2 element displacement degrees of freedom, is defined as

{Xc} =X = X, Xe2 = Xlzel ‘X3

= Xl(’Z""’x(?A = XIZ(Q) (Alg)
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TABLE XVIII.—BENDING MOMENTS FOR CANTILEVER BEAM

[{See Fig. 12.}
Nodes | Deflection,” | M, clement 1,* { M, element 2, | M, elemem 1, | M, clement 2,
in. in.-lb in.-lb in.-Ib in.-Ib
| [— 600.0 —_ 378.5 —
(600.0)
S — 600.0 ——- 378.5 —
(600.0)
3 2138 -300.0 +300.0 58.60 -58.60
4 2138 -300.0 +300.0 58.60 —58.60
5 7048 | o | - —
(7328) | -
6 7048 | o | — —_
(7328 | —-ee-
BQuantitics in parentheses are from the beam solution.
where the subscript iej represents the ith displacement for the Xe=X16=0 (A211)
Jjth element (see fig. 12(c)).
Notice the similarities between the displacement vector [X] Xg7=X=Xou (A21g)
given by equation (A19) and the force vector [F] given by
equation (A15). These vectors ({X.] and {F}) represent the Xg = Xieg = Xoes (A21h)
concatenation of the element displacement and force degrees
of freedoms, respectively. By following standard techniques, Xo=X5= X2 (A211)
the equilibrium equations given by equation (A18) can be
written in terms of nodal displacements {X,] as X0 = X0 = Xaey (A21)
K] [K]I(X ) = [P} (A20) Xt = Xiont = X202 (A21k)
The stiffness matrix {K,] is of dimension 6 X 12, and its six X2 = X120 = Xoi3 (A21])

rows represent the contributions to the system equilibrium at
nodes 3 and 4 (fig. 12). Likewise, the stiffness matrix [K;]
is of dimension 12x 12, and its 12 rows represent the contribu-
tions to the system equilibrium at nodes 3, 4, 5, and 6. The
equilibrium equations (eq. (A20)) expressed in terms of
displacements still represent an indeterminate rectangular
system with 12 equations in terms of 24 unknown displacement
variables. Twelve displacement continuity conditions are
required to augment the equilibrium equations to a solvable
set of 24 equations in 24 unknowns. The 12 displacement
continuity conditions for the 2-element plate flexure problem
are as follows: i

X, = X, =0 (A21a)
Xy =X,=0 (A21b)
X3=Xi3=0 (A2l¢)
Xy = Xy =0 (A21d)
Xs5=X,5=0 (A2le)

22

The 12 displacement continuity conditions given by equation
(A21) can be represented by a single matrix equation:

[CLIX] = {0] (A22)

where [C,,] represents the 12x24 displacement continuity
matrix. The 12 equilibrium equations (eq. (A20)), written in
terms of displacements, are coupled to the 12 displacement
continuity conditions (eq. (A21)) to obtain the 24 X24 solvable
equation system (given by eq. (A23)) of the stiffness method.
From this system the 24 displacement components [X ] can

be calculated:
[[Kd:[le] X, = {f} (A23)
[C,] 0

The solution of equation (A23), which represents a square
but nonsymmetrical set of equations, yields the displacements
from which the forces can be calculated by differentiation, or
its equivalent, and back calculations. In the popular stiffness



method, the continuity conditions (eq. (A21)) are trivially
solved by the linkage of nodal variables and condensation to
generate the well-known symmetrical stiffness matrix of
dimension mXm, (m = 12 for this problem). In principle,
however, equation (A23) represents the basic unabridged set
of equations of the stiffness method that, for convenience, is
manipulated to obtain the condensed symmetrical form.

From the structure of the IFM equations (eq. (Al5)) and
the stiffness equations (eq. (A23)), we observe the following:

(1) In the IFM the equilibrium equations, written in terms
of forces, are augmented by the compatibility conditions, also
written in terms of forces, to obtain the IFM governing
equations [S]{F} = (P*], given by equation (A15).

(2) In the stiffness method the equilibrium equations, which
are expressed in terms of displacements, are augmented by
displacement continuity conditions to obtain the stiffness
method’s governing matrix equation [K]{X] = [P®}, given by
equation (A23).

(3) For this problem the number of IFM governing equations
(eq. (A15)) is 18, which is fewer than the 24 equations
{eq. (A23)) of the displacement method.

(4) Typically, a sparser system of equations results from
writing equilibrium equations in terms of forces rather than
in terms of displacement variables.

(5) Both the compatibility conditions ([C][G]{F] = [6R]) of
the IFM and the continuity conditions ([Cry]{X,} = {0]) of
the stiffness method yield very sparse systems of equations;
however, the equations of the continuity conditions are rela-
tively more sparse than those of the compatibility conditions.

(6) The equilibrium equations remain indeterminate when
expressed either in terms of forces or in terms of displacements
(refer to IFM eq. (A16) and stiffness eq. (A20)). However,
the indeterminancy of the equilibrium equations is alleviated
in the case of the IFM by the compatibility condition
([C)[G){F) = {6R}), or in the displacement method by the dis-
placement continuity condition [CTy]{X] = [0].
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[B]
(B.]
[C]
(C.]
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Appendix B

Symbols
(m X n) equilibrium matrix Uy,
element equilibrium matrix
(r X n) compatibility matrix Upo
(3%x9) elemental boundary compatibility Yy
matrix for the edge where y =k; w

[CI=ICIIG]
displacement continuity matrix
Young’s modulus
internal forces; (n X 1) internal force vector
force component
(n X n) concatenated flexibility matrix
element flexibiity matrix
(n X m) force coefficient matrix
plate thickness

deformation coefficient matrix; first (im X n)
partition of [[S]']"
(m x m) symmetrical stiffness matrix

matrix defined by first (m X m) partition of

(ISIIG1'1S1]

direction cosines to the outward normal to.

the boundary curve

plate bending moments; generalized stress
resultants

number of displacement degrees of freedom
interpolating polynomials for strain and stress
generalized stress resultants

number of force degrees of freedom,
unknown number of equations or forces
in IFM

(m x 1) external load vector

cquivalent loads

transverse distributed load

number of compatibility conditions,
r=n—m

(n % n) IFM governing matrix

complementary strain energy

8

8o}

Yoy Yy Vac
(R}

(0]

Superscript:
T

discretized internal energy for flexural
response

strain energy in flexure
shear force at any location along span of beam

potential of loads

plate curvatures

nodal displacment unknown

concatenation of 2 elemental nodal
displacements I

displacement degrees of freedom

constants linked to nodal displacement
degrees of freedom

[G][F;
(n x 1) initial deformation vector
generalized deformation
(r x 1) initial deformation vector;
SR = —[CI(B,}
displacement at tip of beam
transverse displacement at center of plate
strain vector
generalized deformations
curvature
generalized deformations
Poisson’s ratio; 0.3
stress vector
shear stress
stress functions in flexure
transverse rotation
plate domain in Cartesian coordiantes

null matrix

transpose of matrix or vector
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