21,890 research outputs found

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    Incremental multiple objective genetic algorithms

    Get PDF
    This paper presents a new genetic algorithm approach to multi-objective optimization problemsIncremental Multiple Objective Genetic Algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages: first, an independent population is evolved to optimize one specific objective; second, the better-performing individuals from the evolved single-objective population and the multi-objective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multi-objective population, to which a multi-objective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better

    The impact of enterprise application integration on information system lifecycles

    Get PDF
    Information systems (IS) have become the organisational fabric for intra-and inter-organisational collaboration in business. As a result, there is mounting pressure from customers and suppliers for a direct move away from disparate systems operating in parallel towards a more common shared architecture. In part, this has been achieved through the emergence of new technology that is being packaged into a portfolio of technologies known as enterprise application integration (EAI). Its emergence however, is presenting investment decision-makers charged with the evaluation of IS with an interesting challenge. The integration of IS in-line with the needs of the business is extending their identity and lifecycle, making it difficult to evaluate the full impact of the system as it has no definitive start and/or end. Indeed, the argument presented in this paper is that traditional life cycle models are changing as a result of technologies that support their integration with other systems. In this paper, the need for a better understanding of EAI and its impact on IS lifecycles are discussed and a classification framework proposed.Engineering and Physical Sciences Research Council (EPSRC) Grant Ref: (GR/R08025) and Australian Research Council (DP0344682)

    Heuristics Miners for Streaming Event Data

    Full text link
    More and more business activities are performed using information systems. These systems produce such huge amounts of event data that existing systems are unable to store and process them. Moreover, few processes are in steady-state and due to changing circumstances processes evolve and systems need to adapt continuously. Since conventional process discovery algorithms have been defined for batch processing, it is difficult to apply them in such evolving environments. Existing algorithms cannot cope with streaming event data and tend to generate unreliable and obsolete results. In this paper, we discuss the peculiarities of dealing with streaming event data in the context of process mining. Subsequently, we present a general framework for defining process mining algorithms in settings where it is impossible to store all events over an extended period or where processes evolve while being analyzed. We show how the Heuristics Miner, one of the most effective process discovery algorithms for practical applications, can be modified using this framework. Different stream-aware versions of the Heuristics Miner are defined and implemented in ProM. Moreover, experimental results on artificial and real logs are reported
    corecore