143,397 research outputs found
Inspiratory muscle training and its effect on indices of physiological and perceived stress during incremental walking exercise in normobaric hypoxia
This study evaluated the effects of inspiratory muscle training (IMT) on inspiratory muscle fatigue (IMF) and physiological and perceptual responses during trekking-specific exercise. An 8-week IMT program was completed by 21 males (age 32.4 ± 9.61 years, VO2peak 58.8 ± 6.75 mL/kg/min) randomised within matched pairs to either the IMT group (n = 11) or the placebo group [(P), n = 9]. Twice daily, participants completed 30 (IMT) or 60 (P) inspiratory efforts using a Powerbreathe initially set at a resistance of 50% (IMT) or used at 15% (P) of maximal inspiratory pressure (MIP) throughout. A loaded (12.5 kg) 39-minute incremental walking protocol (3–5 km/hour and 1–15% gradient) was completed in normobaric hypoxia (PIO2 = 110 mmHg, 3000 m) before and after training. MIP increased from 164 to 188 cmH2O (18%) and from 161 to 171 cmH2O (6%) in the IMT and P groups (P = 0.02). The 95% CI for IMT showed a significant improvement in MIP (5.21±43.33 cmH2O), but not for P. IMF during exercise (MIP) was*5%, showing no training effect for either IMT or P (P = 0.23). Rating of perceived exertion (RPE) was consistently reduced (*1) throughout exercise following training for IMT, but not for P (P = 0.03). The mean blood lactate concentration during exercise was significantly reduced by 0.26 and 0.15 mmol/L in IMT and P (P = 0.00), with no differences between groups (P = 0.34). Rating of dyspnoea during exercise decreased (*0.4) following IMT but increased (*0.3) following P (P = 0.01). IMT may attenuate the increased physiological and perceived exercise stress experienced during normobaric hypoxia, which may benefit moderate altitude expedition
Determinants of inspiratory muscle strength in healthy humans
We investigated 1) the relationship between the baseline and inspiratory muscle training (IMT) induced increase in maximal inspiratory pressure (PI,max) and 2) the relative contributions of the inspiratory chest wall muscles and the diaphragm (Poes/Pdi) to PI,max prior to and following-IMT. Experiment 1: PI,max was assessed during a Müeller manoeuvre before and after 4-wk IMT (n=30). Experiment 2: PI,max and the relative contribution of the inspiratory chest wall muscles to the diaphragm (Poes/Pdi) were assessed during a Müeller manoeuvre before and after 4-wk IMT (n=20). Experiment 1: PI,max increased 19% (P<0.01) post-IMT and was correlated with baseline PI,max (r=−0.373, P<0.05). Experiment 2: baseline PI,max was correlated with Poe/Pdi (r=0.582, P<0.05) and after IMT PI,max increased 22% and Poe/Pdi increased 5% (P<0.05). In conclusion, baseline PI,max and the contribution of the chest wall inspiratory muscles relative to the diaphragm affect, in part, baseline and IMT-induced ΔPI,max. Great care should be taken when designing future IMT studies to ensure parity in the between-subject baseline PI,max
Intima-Media Thickness: Setting a Standard for a Completely Automated Method of Ultrasound Measurement
The intima - media thickness (IMT) of the common carotid artery is a widely used clinical marker of severe cardiovascular diseases. IMT is usually manually measured on longitudinal B-Mode ultrasound images. Many computer-based techniques for IMT measurement have been proposed to overcome the limits of manual segmentation. Most of these, however, require a certain degree of user interaction. In this paper we describe a new completely automated layers extraction (CALEXia) technique for the segmentation and IMT measurement of carotid wall in ultrasound images. CALEXia is based on an integrated approach consisting of feature extraction, line fitting, and classification that enables the automated tracing of the carotid adventitial walls. IMT is then measured by relying on a fuzzy K-means classifier. We tested CALEXia on a database of 200 images. We compared CALEXia performances to those of a previously developed methodology that was based on signal analysis (CULEXsa). Three trained operators manually segmented the images and the average profiles were considered as the ground truth. The average error from CALEXia for lumen - intima (LI) and media - adventitia (MA) interface tracings were 1.46 ± 1.51 pixel (0.091 ± 0.093 mm) and 0.40 ± 0.87 pixel (0.025 ± 0.055 mm), respectively. The corresponding errors for CULEXsa were 0.55 ± 0.51 pixels (0.035 ± 0.032 mm) and 0.59 ± 0.46 pixels (0.037 ± 0.029 mm). The IMT measurement error was equal to 0.87 ± 0.56 pixel (0.054 ± 0.035 mm) for CALEXia and 0.12 ± 0.14 pixel (0.01 ± 0.01 mm) for CULEXsa. Thus, CALEXia showed limited performance in segmenting the LI interface, but outperformed CULEXsa in the MA interface and in the number of images correctly processed (10 for CALEXia and 16 for CULEXsa). Based on two complementary strategies, we anticipate fusing them for further IMT improvement
Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea
Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax
Low-frequency characterization of quantum tunneling in flux qubits
We propose to investigate flux qubits by the impedance measurement technique
(IMT), currently used to determine the current--phase relation in Josephson
junctions. We analyze in detail the case of a high-quality tank circuit coupled
to a persistent-current qubit, to which IMT was successfully applied in the
classical regime. It is shown that low-frequency IMT can give considerable
information about the level anticrossing, in particular the value of the
tunneling amplitude. An interesting difference exists between applying the ac
bias directly to the tank and indirectly via the qubit. In the latter case, a
convenient way to find the degeneracy point in situ is described. Our design
only involves existing technology, and its noise tolerance is quantitatively
estimated to be realistic.Comment: 6 pages, 11 figures, to appear in Phys.Rev.
Carotid intima media thickness and low high-density lipoprotein (HDL) in South Asian immigrants: could dysfunctional HDL be the missing link?
IntroductionSouth Asian immigrants (SAIs) in the US exhibit higher prevalence of coronary artery disease (CAD) and its risk factors compared with other ethnic populations. Conventional CAD risk factors do not explain the excess CAD risk; therefore there is a need to identify other markers that can predict future risk of CAD in high-risk SAIs. The objective of the current study is to assess the presence of sub-clinical CAD using common carotid artery intima-media thickness (CCA-IMT), and its association with metabolic syndrome (MS) and pro-inflammatory/dysfunctional HDL (Dys-HDL).Material and methodsA community-based study was conducted on 130 first generation SAIs aged 35-65 years. Dys-HDL was determined using the HDL inflammatory index. Analysis was completed using logistic regression and Fisher's exact test.ResultsSub-clinical CAD using CCA-IMT ≥ 0.8 mm (as a surrogate marker) was seen in 31.46%. Age and gender adjusted CCA-IMT was significantly associated with type 2 diabetes (p = 0.008), hypertension (p = 0.012), high-sensitivity C-reactive protein (p < 0.001) and homocysteine (p = 0.051). Both the presence of MS and Dys-HDL was significantly correlated with CCA-IMT, even after age and gender adjustment. The odds of having Dys-HDL with CCA-IMT were 5 times (95% CI: 1.68, 10.78).ConclusionsThere is a need to explore and understand non-traditional CAD risk factors with a special focus on Dys-HDL, knowing that SAIs have low HDL levels. This information will not only help to stratify high-risk asymptomatic SAI groups, but will also be useful from a disease management point of view
Inspiration for the Future: The Role of Inspiratory Muscle Training in Cystic Fibrosis.
Cystic fibrosis (CF) is an inherited, multi-system, life-limiting disease characterized by a progressive decline in lung function, which accounts for the majority of CF-related morbidity and mortality. Inspiratory muscle training (IMT) has been proposed as a rehabilitative strategy to treat respiratory impairments associated with CF. However, despite evidence of therapeutic benefits in healthy and other clinical populations, the routine application of IMT in CF can neither be supported nor refuted due to the paucity of methodologically rigorous research. Specifically, the interpretation of available studies regarding the efficacy of IMT in CF is hampered by methodological threats to internal and external validity. As such, it is important to highlight the inherent risk of bias that differences in patient characteristics, IMT protocols, and outcome measurements present when synthesizing this literature prior to making final clinical judgments. Future studies are required to identify the characteristics of individuals who may respond to IMT and determine whether the controlled application of IMT can elicit meaningful improvements in physiological and patient-centered clinical outcomes. Given the equivocal evidence regarding its efficacy, IMT should be utilized on a case-by-case basis with sound clinical reasoning, rather than simply dismissed, until a rigorous evidence-based consensus has been reached
Loading of trained inspiratory muscles speeds lactate recovery kinetics
Purpose: To investigate the effects of inspiratory muscle loading (ITL) and inspiratory muscle training (IMT) upon blood lactate concentration ([lacj]B)and acid-base balance following maximal incremental cycling.
Methods: 18 subjects were divided into a control (n = 9) or IMT group (n = 9). Prior to and following a 6 wk intervention subjects completed two maximal incremental cycling tests followed by 20 min of recovery with (ITL) or without (passive recovery; PR) a constant inspiratory resistance (15 cmH2O). The IMT group performed 6 wk pressure threshold IMT at 50% maximal inspiratory mouth pressure (MIP). Throughout recovery, acid-base balance was quantified using the physicochemical approach by measuring the strong ion difference ([SID])=[Na+]+[K+]-[ Clj]+[ lacj]), the total concentration of weak acids ([Atot j]) and the partial pressure of carbon dioxide (PCO2).
Results: Following the intervention MIP increased in the IMT group only (+34%). No differences in lactate clearance were observed between PR and ITL before the intervention in both groups and following the intervention in the control group. Following IMT, relative to PR, [lacj]B was reduced throughout ITL (min 2 to 20) by 0.66 ± 1.28 mmol·L-1 (P<0.05) and both the fast (lactate exchange) and slow (lactate clearance) velocity constants of the lactate recovery kinetics were increased (P<0.05). Relative to pre-IMT, ITL reduced plasma [H+] which was accounted for by an IMT-mediated increase in [SID] due almost exclusively to a 1.7 mmol·L-1 reduction in [lacj]B.
Conclusions: Following maximal exercise ITL affected lactate recovery kinetics only after IMT. Our data support the notion that the inspiratory muscles are capable of lactate clearance which increases [SID] and reduces [H+]. These effects may facilitate subsequent bouts of high-intensity exercise
The effects of inspiratory muscle training in older adults
Purpose: Declining inspiratory muscle function and structure and systemic low-level inflammation and oxidative stress may contribute to morbidity and mortality during normal ageing. Therefore, we examined the effects of inspiratory muscle training (IMT) in older adults on inspiratory muscle function and structure and systemic inflammation and oxidative stress, and re-examined the reported positive effects of IMT on respiratory muscle strength, inspiratory muscle endurance, spirometry, exercise performance, physical activity levels (PAL) and quality of life (QoL). Methods: Thirty-four healthy older adults (68 ± 3 years) with normal spirometry, respiratory muscle strength and physical fitness were divided equally into a pressure-threshold IMT or sham-hypoxic placebo group. Before and after an 8 week intervention, measurements were taken for dynamic inspiratory muscle function and inspiratory muscle endurance using a weighted plunger pressure-threshold loading device, diaphragm thickness using B-mode ultrasonography, plasma cytokine concentrations using immunoassays, DNA damage levels in peripheral blood mononuclear cells (PBMC) using Comet Assays, spirometry, maximal mouth pressures, exercise performance using a six minute walk test, PAL using a questionnaire and accelerometry, and QoL using a questionnaire
- …
