82 research outputs found

    Parallel-in-time integration of the shallow water equations on the rotating sphere using Parareal and MGRIT

    Full text link
    Despite the growing interest in parallel-in-time methods as an approach to accelerate numerical simulations in atmospheric modelling, improving their stability and convergence remains a substantial challenge for their application to operational models. In this work, we study the temporal parallelization of the shallow water equations on the rotating sphere combined with time-stepping schemes commonly used in atmospheric modelling due to their stability properties, namely an Eulerian implicit-explicit (IMEX) method and a semi-Lagrangian semi-implicit method (SL-SI-SETTLS). The main goal is to investigate the performance of parallel-in-time methods, namely Parareal and Multigrid Reduction in Time (MGRIT), when these well-established schemes are used on the coarse discretization levels and provide insights on how they can be improved for better performance. We begin by performing an analytical stability study of Parareal and MGRIT applied to a linearized ordinary differential equation depending on the choice of a coarse scheme. Next, we perform numerical simulations of two standard tests to evaluate the stability, convergence and speedup provided by the parallel-in-time methods compared to a fine reference solution computed serially. We also conduct a detailed investigation on the influence of artificial viscosity and hyperviscosity approaches, applied on the coarse discretization levels, on the performance of the temporal parallelization. Both the analytical stability study and the numerical simulations indicate a poorer stability behaviour when SL-SI-SETTLS is used on the coarse levels, compared to the IMEX scheme. With the IMEX scheme, a better trade-off between convergence, stability and speedup compared to serial simulations can be obtained under proper parameters and artificial viscosity choices, opening the perspective of the potential competitiveness for realistic models.Comment: 35 pages, 23 figure

    Entropy-Preserving and Entropy-Stable Relaxation IMEX and Multirate Time-Stepping Methods

    Full text link
    We propose entropy-preserving and entropy-stable partitioned Runge--Kutta (RK) methods. In particular, we extend the explicit relaxation Runge--Kutta methods to IMEX--RK methods and a class of explicit second-order multirate methods for stiff problems arising from scale-separable or grid-induced stiffness in a system. The proposed approaches not only mitigate system stiffness but also fully support entropy-preserving and entropy-stability properties at a discrete level. The key idea of the relaxation approach is to adjust the step completion with a relaxation parameter so that the time-adjusted solution satisfies the entropy condition at a discrete level. The relaxation parameter is computed by solving a scalar nonlinear equation at each timestep in general; however, as for a quadratic entropy function, we theoretically derive the explicit form of the relaxation parameter and numerically confirm that the relaxation parameter works the Burgers equation. Several numerical results for ordinary differential equations and the Burgers equation are presented to demonstrate the entropy-conserving/stable behavior of these methods. We also compare the relaxation approach and the incremental direction technique for the Burgers equation with and without a limiter in the presence of shocks.Comment: 37 pages, 16 figures, 4 table

    Multiphysics simulations: challenges and opportunities.

    Full text link

    High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler-Poisson System in the Quasineutral Limit

    Full text link
    In this paper, the design and analysis of high order accurate IMEX finite volume schemes for the compressible Euler-Poisson (EP) equations in the quasineutral limit is presented. As the quasineutral limit is singular for the governing equations, the time discretisation is tantamount to achieving an accurate numerical method. To this end, the EP system is viewed as a differential algebraic equation system (DAEs) via the method of lines. As a consequence of this vantage point, high order linearly semi-implicit (SI) time discretisation are realised by employing a novel combination of the direct approach used for implicit discretisation of DAEs and, two different classes of IMEX-RK schemes: the additive and the multiplicative. For both the time discretisation strategies, in order to account for rapid plasma oscillations in quasineutral regimes, the nonlinear Euler fluxes are split into two different combinations of stiff and non-stiff components. The high order scheme resulting from the additive approach is designated as a classical scheme while the one generated by the multiplicative approach possesses the asymptotic preserving (AP) property. Time discretisations for the classical and the AP schemes are performed by standard IMEX-RK and SI-IMEX-RK methods, respectively so that the stiff terms are treated implicitly and the non-stiff ones explicitly. In order to discretise in space a Rusanov-type central flux is used for the non-stiff part, and simple central differencing for the stiff part. AP property is also established for the space-time fully-discrete scheme obtained using the multiplicative approach. Results of numerical experiments are presented, which confirm that the high order schemes based on the SI-IMEX-RK time discretisation achieve uniform second order convergence with respect to the Debye length and are AP in the quasineutral limit

    Monolithic Multigrid for Magnetohydrodynamics

    Full text link
    The magnetohydrodynamics (MHD) equations model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. After discretization and linearization, the resulting system of equations is generally difficult to solve due to the coupling between variables, and the heterogeneous coefficients induced by the linearization process. In this paper, we investigate multigrid preconditioners for this system based on specialized relaxation schemes that properly address the system structure and coupling. Three extensions of Vanka relaxation are proposed and applied to problems with up to 170 million degrees of freedom and fluid and magnetic Reynolds numbers up to 400 for stationary problems and up to 20,000 for time-dependent problems
    corecore