9,720 research outputs found
Optimal Multiuser Diversity in Multi-Cell MIMO Uplink Networks: User Scaling Law and Beamforming Design
We introduce a distributed protocol to achieve multiuser diversity in a multicell multiple-input multiple-output (MIMO) uplink network, referred to as a MIMO interfering multiple-access channel (IMAC). Assuming both no information exchange among base stations (BS) and local channel state information at the transmitters for the MIMO IMAC, we propose a joint beamforming and user scheduling protocol, and then show that the proposed protocol can achieve the optimal multiuser diversity gain, i.e., KM log (SNR log N), as long as the number of mobile stations (MSs) in a cell, N, scales faster than SNRKM-L/1-epsilon for a small constant epsilon > 0, where M, L, K, and SNR denote the number of receive antennas at each BS, the number of transmit antennas at each MS, the number of cells, and the signal-to-noise ratio, respectively. Our result indicates that multiuser diversity can be achieved in the presence of intra-cell and inter-cell interference even in a distributed fashion. As a result, vital information on how to design distributed algorithms in interference-limited cellular environments is provided
Recommended from our members
Isolation and characterization of Pisum sativum apyrases, PsNTP9 and PsNTP9-DM, cloned and expressed in Escherichia coli
Adenosine triphosphate (ATP) is widely known as a fuel source for many biochemical processes, and to a lesser degree also as a signaling molecule in plants and animals. When plants are subjected to biotic or abiotic stress or undergoing exocytosis, they release ATP into the extracellular matrix (ECM). The release of ATP sets off a signal transduction pathway, first rapidly increasing the concentrations of cytosolic calcium, reactive oxygen species, and nitric oxide. How these changes specifically influence physiology is the object of much research in both plants and animals. Some of the changes that are affected influence growth and development, stomatal function, and gravitropism. Apyrases and other phosphatases control the concentration of the released nucleotides by breaking phosphate bonds from nucleoside triphosphates and diphosphates. Research aimed at the discovery of receptors, signaling pathway components, and processes has been successful to some extent. There are now known purinergic receptors in both plants and animal cells.
We have cloned a truncated version of Pisum sativum (ps) NTP9. We used a pET-22B vector to add a histidine tag and transformed the vector into the BL21 Escherichia coli with a T7 promoter to enable IPTG induction of the LAC operon and expression of the enzyme. The pET-22B vector was incubated in separate samples with BL21 cells. Cells were propagated, and the expression of recombinant proteins PsNTP9, and separately, a double mutant PsNTP9-DM with a second calmodulin-binding domain, were induced ectopically. Cells were broken open by shaking them and mixing them with lysis buffer. Centrifugation was performed to separate the supernatant containing the released apyrases from the particulate wall fraction. The enzymes were purified by affinity chromatography, then their purity was evaluated by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). Western blots were performed to verify presence of the apyrases using a commercial anti-histidine antibody to detect PsNTP9 and PsNTP9-DM. Once suitable amounts of our proteins of interest were harvested, we performed Bradford assays to determine the protein concentration of the samples and carried out an apyrase activity assay to determine the specific activity of the purified enzymes and compare it to that of other known phosphatases.Plant Biolog
CT Coronary Angiography with 100kV tube voltage and a low noise reconstruction filter in non-obese patients: evaluation of radiation dose and diagnostic quality of 2D and 3D image reconstructions using open source software (OsiriX)
INTRODUCTION AND PURPOSE. Computed tomography coronary angiography (CTCA) has seen a dramatic evolution in the last decade owing to the availability of multislice CT scanners with 64 detector rows and beyond. However, this evolution has been paralleled by an increase in radiation dose to patients, that can reach extremely high levels (>20mSv) when retrospective ECG-gating techniques are used. On CT angiography, reduction of tube voltage allows to cut radiation dose with improved contrast resolution due to the lower energy of the X-ray beam and increased photoelectric effect. Our purpose is twofold: 1) to evaluate the radiation dose of CTCA studies carried out using a tube voltage of 100kV and a low noise reconstruction filter, compared with a conventional tube voltage of 120kV and a standard reconstruction kernel; 2) to assess the impact of the 100kV acquisition technique on the diagnostic quality of 2D and 3D image reconstructions performed with open source software (OsiriX).
MATERIALS AND METHODS. Fifty-one non-obese patients underwent CTCA on a 64-row CT scanner. Out of them, 28 were imaged using a tube voltage of 100kV and a low noise reconstruction filter, while in the remaining 23 patients a tube voltage of 120kV and a standard reconstruction kernel were selected. All CTCA datasets were exported via PACS to a Macintosh™ computer (iMac™) running OsiriX 4.0 (64-bit version), and Maximum Intensity Projection (MIP), Curved Planar Reformation (CPR), and Volume Rendering (VR) views of each coronary artery were generated using a dedicated plug-in (CMIV CTA; Linköping University, Sweden). Diagnostic quality of MIP, CPR, and VR reconstructions was assessed visually by two radiologists with experience in cardiac CT using a three-point score (1=poor, 2=good, 3=excellent). Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), intravascular CT density, and effective dose for each group were also calculated.
RESULTS. Image quality of VR views was significantly better with the 100kV than with the 120kV protocol (2.77±0.43 vs 2.21±0.85, p=0.0332), while that of MIP and CPR reconstructions was comparable (2.59±0.50 vs 2.32±0.75, p=0.3271, and 2.68±0.48 vs 2.32±0.67, p=0.1118, respectively). SNR and CNR were comparable between the two protocols (16.42±4.64 vs 14.78±2.57, p=0.2502, and 13.43±3.77 vs 12.08±2.10, p=0.2486, respectively), but in the 100kV group aortic root density was higher (655.9±127.2 HU vs 517.2±69.7 HU, p=0.0016) and correlated with VR image quality (rs=0.5409, p=0.0025). Effective dose was significantly lower with the 100kV than with the 120kV protocol (7.43±2.69 mSv vs 18.83±3.60 mSv, p<0.0001).
CONCLUSIONS. Compared with a standard tube voltage of 120kV, usage of 100kV and a low noise filter leads to a significant reduction of radiation dose with equivalent and higher diagnostic quality of 2D and 3D reconstructions, respectively in non-obese patients
Opportunistic Interference Mitigation Achieves Optimal Degrees-of-Freedom in Wireless Multi-cell Uplink Networks
We introduce an opportunistic interference mitigation (OIM) protocol, where a
user scheduling strategy is utilized in -cell uplink networks with
time-invariant channel coefficients and base stations (BSs) having
antennas. Each BS opportunistically selects a set of users who generate the
minimum interference to the other BSs. Two OIM protocols are shown according to
the number of simultaneously transmitting users per cell: opportunistic
interference nulling (OIN) and opportunistic interference alignment (OIA).
Then, their performance is analyzed in terms of degrees-of-freedom (DoFs). As
our main result, it is shown that DoFs are achievable under the OIN
protocol with selected users per cell, if the total number of users in
a cell scales at least as . Similarly, it turns out that
the OIA scheme with () selected users achieves DoFs, if scales
faster than . These results indicate that there exists a
trade-off between the achievable DoFs and the minimum required . By deriving
the corresponding upper bound on the DoFs, it is shown that the OIN scheme is
DoF optimal. Finally, numerical evaluation, a two-step scheduling method, and
the extension to multi-carrier scenarios are shown.Comment: 18 pages, 3 figures, Submitted to IEEE Transactions on Communication
Separation Options for Phosphorylated Osteopontin from Transgenic Microalgae Chlamydomonas reinhardtii.
Correct folding and post-translational modifications are vital for therapeutic proteins to elicit their biological functions. Osteopontin (OPN), a bone regenerative protein present in a range of mammalian cells, is an acidic phosphoprotein with multiple potential phosphorylation sites. In this study, the ability of unicellular microalgae, Chlamydomonas reinhardtii, to produce phosphorylated recombinant OPN in its chloroplast is investigated. This study further explores the impact of phosphorylation and expression from a "plant-like" algae on separation of OPN. Chromatography resins ceramic hydroxyapatite (CHT) and Gallium-immobilized metal affinity chromatography (Ga-IMAC) were assessed for their binding specificity to phosphoproteins. Non-phosphorylated recombinant OPN expressed in E. coli was used to compare the specificity of interaction of the resins to phosphorylated OPN. We observed that CHT binds OPN by multimodal interactions and was better able to distinguish phosphorylated proteins in the presence of 250 mM NaCl. Ga-IMAC interaction with OPN was not selective to phosphorylation, irrespective of salt, as the resin bound OPN from both algal and bacterial sources. Anion exchange chromatography proved an efficient capture method to partially separate major phosphorylated host cell protein impurities such as Rubisco from OPN
Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions
This work was supported in part by the European Union, Area NMP.2013.1.1–2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530, and by the EU Seventh Framework Programme (FP7 2007–2013) under the WallTraC project (Grant Agreement no 263916), and BioStruct-X (grant agreement no 283570). This paper reflects the author’s views only. The European Community is not liable for any use that may be made of the information contained herein. CMGAF is also supported by Fundação para a Ciência e a Tecnologia (Lisbon, Portugal) through grants PTDC/BIA-PRO/103980/2008 and EXPL/BIA-MIC/1176/2012. EAB is also funded by a grant (No. 1349/13) from the Israel Science Foundation (ISF), Jerusalem, Israel and by a grant (No. 2013284) from the U.S.-Israel Binational Science Foundation (BSF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry.Peer reviewedPublisher PD
Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors
Detergents enable the purification of membrane proteins and are indispensable reagents instructural biology. Even though a large variety of detergents have been developed in the lastcentury, the challenge remains to identify guidelines that allowfine-tuning of detergents forindividual applications in membrane protein research. Addressing this challenge, here weintroduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS)reveals that the modular OGD architecture offers the ability to control protein purificationand to preserve interactions with native membrane lipids during purification. In addition to abroad range of bacterial membrane proteins, OGDs also enable the purification and analysisof a functional G-protein coupled receptor (GPCR). Moreover, given the modular design ofthese detergents, we anticipatefine-tuning of their properties for specific applications instructural biology. Seen from a broader perspective, this represents a significant advance forthe investigation of membrane proteins and their interactions with lipids
Lights, Camera, Action! Exploring Effects of Visual Distractions on Completion of Security Tasks
Human errors in performing security-critical tasks are typically blamed on
the complexity of those tasks. However, such errors can also occur because of
(possibly unexpected) sensory distractions. A sensory distraction that produces
negative effects can be abused by the adversary that controls the environment.
Meanwhile, a distraction with positive effects can be artificially introduced
to improve user performance.
The goal of this work is to explore the effects of visual stimuli on the
performance of security-critical tasks. To this end, we experimented with a
large number of subjects who were exposed to a range of unexpected visual
stimuli while attempting to perform Bluetooth Pairing. Our results clearly
demonstrate substantially increased task completion times and markedly lower
task success rates. These negative effects are noteworthy, especially, when
contrasted with prior results on audio distractions which had positive effects
on performance of similar tasks. Experiments were conducted in a novel (fully
automated and completely unattended) experimental environment. This yielded
more uniform experiments, better scalability and significantly lower financial
and logistical burdens. We discuss this experience, including benefits and
limitations of the unattended automated experiment paradigm
Optimized expression of the Starmerella bombicola lactone esterase in Pichia pastoris through temperature adaptation, codon-optimization and co-expression with HAC1
The Starmerella bombicola lactone esterase (SBLE) is a novel enzyme that, in vivo, catalyzes the intramolecular esterification (lactonization) of acidic sophorolipids in an aqueous environment. In fact, this is an unusual reaction given the unfavorable conditions for dehydration. This characteristic strongly contributes to the potential of SBLE to become a 'green' tool in industrial applications. Indeed, lactonization occurs normally in organic solvents, an application for which microbial lipases are increasingly used as biocatalysts. Previously, we described the production of recombinant SBLE (rSBLE) in Pichia pastoris (syn. Komagataella phaffii). However, expression was not optimal to delve deeper into the enzyme's potential for industrial application. In the current study, we explored codon-optimization of the SBLE gene and we optimized the rSBLE expression protocol. Temperature reduction had the biggest impact followed by codon-optimization and co-expression of the HAC1 transcription factor. Combining these approaches, we achieved a 32-fold improvement of the yield during rSBLE production (from 0.75 mg/l to 24 mg/L culture) accompanied with a strong reduction of contaminants after affinity purification
- …
