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Adenosine triphosphate (ATP) is widely known as a fuel source for many 

biochemical processes, and to a lesser degree also as a signaling molecule in plants 

and animals. When plants are subjected to biotic or abiotic stress or undergoing 

exocytosis, they release ATP into the extracellular matrix (ECM). The release of ATP 

sets off a signal transduction pathway, first rapidly increasing the concentrations of 

cytosolic calcium, reactive oxygen species, and nitric oxide. How these changes 

specifically influence physiology is the object of much research in both plants and 

animals. Some of the changes that are affected influence growth and development, 

stomatal function, and gravitropism. Apyrases and other phosphatases control the 

concentration of the released nucleotides by breaking phosphate bonds from 

nucleoside triphosphates and diphosphates. Research aimed at the discovery of 

receptors, signaling pathway components, and processes has been successful to 

some extent. There are now known purinergic receptors in both plants and animal 

cells. 

We have cloned a truncated version of Pisum sativum (ps) NTP9. We used a 

pET-22B vector to add a histidine tag and transformed the vector into the BL21 

Escherichia coli with a T7 promoter to enable IPTG induction of the LAC operon and 

expression of the enzyme. The pET-22B vector was incubated in separate samples 

with BL21 cells.  Cells were propagated, and the expression of recombinant proteins 
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PsNTP9, and separately, a double mutant PsNTP9-DM with a second calmodulin-

binding domain, were induced ectopically. Cells were broken open by shaking them 

and mixing them with lysis buffer. Centrifugation was performed to separate the 

supernatant containing the released apyrases from the particulate wall fraction. The 

enzymes were purified by affinity chromatography, then their purity was evaluated by 

sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). Western 

blots were performed to verify presence of the apyrases using a commercial anti-

histidine antibody to detect PsNTP9 and PsNTP9-DM. Once suitable amounts of our 

proteins of interest were harvested, we performed Bradford assays to determine the 

protein concentration of the samples and carried out an apyrase activity assay to 

determine the specific activity of the purified enzymes and compare it to that of other 

known apyrases. 
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Chapter 1 – Introduction

In order to survive, plants must react to their environments chemically. This is 

true at both the organismal level and the cellular level. Some responses need to be 

relatively quick, like a response to herbivory or infection. An initial signal is perceived 

in response to an external or internal stimulus, which initiates a signal transduction 

chain reaction that causes a cellular response, such as a change in gene expression. 

In response to many biotic and abiotic stimuli, signaling molecules are released from 

cell membranes to signal the appropriate response at the correct location. Certain 

chemicals are used for extracellular communication of transducing signals, such as 

hormones, or neurotransmitters in animals. For each type of signaling molecule, there 

is a corresponding type of receptor. Intercellular signals must be transduced across 

the cell membrane to take effect in a cell.  

Extracellular ATP (eATP), and other nucleotides are known to be an 

intercellular signaling molecule in both plants and animals. The receptors that 

respond to these signals are termed purinergic (Burnstock, 1972). Many different 

physiological responses to eATP have been identified in plants, animals, and 

microbes. Though the details of signal transduction may not yet be known, multiple 

purinergic receptors (purinoceptors) have been identified in animals, however, until 

2014 there was no published research that identified a plant eATP receptor with an 

extracellular domain. This purinergic receptor, called DORN1, was identified in 

Arabidopsis, (Choi et al., 2014). This contributed validity to the study of eATP as an 

intercellular signaling molecule in plants. Without an eATP receptor in the ECM, it was 

unclear how an eATP signal could be transduced into a physiological response. 
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Purinergic receptors have been divided into 2 classes called P1 and P2. Only 

adenosine and AMP can be bound by P1 receptors, but the P2 receptors bind ADP, 

ATP, and many other nucleoside di- and triphosphates. P2 purinoceptors are further 

divided into type P2X, the ligand-gated subtype, and P2Y, the G-protein-coupled 

subtype. When P2 receptors are activated in animal cells, the cytosolic calcium 

concentration increases rapidly. This also happens in plant cells (Burnstock, 2007) 

(Jeter et al., 2004) (Demidchek, 2009). Plant purinoceptors can also be blocked by 

the same antagonists as animal purinoceptors (Song et al. 2006). Despite these 

shared characteristics, there is very little structural similarity between plant and animal 

purinoceptors. The study of animal P2X receptors, and a search for sequence 

similarity did lead to the discovery of a purinoceptor with strong sequence similarity 

in Ostreococcus tauri, a unicellular green alga (Fountain et al., 2008). 

DORN1 was discovered through the study of a plasma-membrane-bound 

lectin receptor-kinase with high affinity for ATP (LecRK1-9). Knocking-out LecRk1-9 

in Arabidopsis, resulted in a null mutant unable to increase its cytosolic calcium 

concentration in response to treatments. With this finding, the original protein was 

renamed to Does Not Respond to Nucleotides 1 (DORN1) in reference to the null 

mutant, and the knockout that facilitated its discovery. 

There are 45 lectin-receptor kinases (LecRK) in Arabidopsis, many of which 

have large extracellular domains (Clark et al., 2014). Though some have already been 

ascribed other unrelated functions, many are considered as candidates for additional 

purinoceptors. Patch-clamp studies of the kinetics of cellular uptake of calcium 

revealed a dynamic range (Demidcheck, 2011), which lends support to the idea of 
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there being two types of P2 purinoceptors in plants, as there are in animals (Roux, 

2014). 

The advantage of being able to respond quickly to increased concentrations 

of eATP is likely that it grants the ability to induce defense responses in a timely 

manner (Clark and Roux, 2011). Following the increase in cytosolic calcium 

concentration, there is a rapid increase in reactive oxygen species (ROS), including 

superoxides and peroxides, and nitric oxide (NO) (Tanaka et al., 2010). Additionally, 

the NADPH oxidase enzyme that catalyzes superoxide production is stimulated by 

increased cytosolic calcium (Monshausen, 2009). Increased levels of ROS and NO 

are linked to increased expression of mitogen-activated protein kinase (MAPK) 

genes, which are regular members of signal transduction cascades from cytoplasm 

to nucleus (Jeter et al., 2004; Song et al., 2006; Choi et al., 2014). 

Alternatively, it has been proposed that eATP induces plant defense 

responses mediated through activation of intracellular signaling by jasmonic acid (JA) 

(Tripathi et al., 2018). They asserted that other JA signaling components are affected 

by increased eATP, and further suggested direct cross talk between eATP and JA in 

intracellular signaling events. 

The release of eATP at wound sites causes a responding increase in the 

expression of apyrase genes (Lim et al., 2014). These enzymes then act to lower the 

amount of eATP and dampen the effects by hydrolyzing phosphates from ATP and 

ADP (Song et al., 2006). Fluctuations in extracellular nucleotide concentrations affect 

growth (Roux et al., 2007), and stomatal function (Clark et al., 2011;  Hao et al., 2012). 

As cells expand during normal growth, they release eATP that can stimulate or stunt 

growth, depending upon the induction of ROS and NO signals in a dose-dependent 
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manner (Clark and Roux, 2011). It is expected that influence on auxin transport is the 

mechanism by which eATP affects growth (Tang et al., 2003;  Liu et al., 2012).   

As in all higher life forms, the biochemical systems within plants are highly 

integrated. The use of feedback loops in signaling are necessary to help prevent one 

system from overrunning another in a way that negatively affects the survival of the 

organism. In short, all signals need to be turned off once they’ve run their course. 

Extracellular apyrases as well as extracellular phosphatases are the regulators of 

extracellular nucleotide signals, and they stop purinoceptors from being activated by 

hydrolyzing their agonists. 
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Chapter 2: Cloning and transformation of BL21 Escheria coli with 

plasmid vector 

2.1 Materials and methods 

2.1.1 The bacterial vector 

The plasmid was provided to Roux Lab by the Maynard Lab, in the Department of 

Chemical Engineering (CPE 5.456). The vector was crafted using the pET-22b(+) 

plasmid, and includes an N-terminal signal sequence for periplasmic localization 

attached to a truncated PsNTP9 with a C-terminal His•Tag® sequence. The plasmid 

also contains a hybrid T7 LAC promoter and the lacI gene encoding the Lac repressor, 

which makes transcription under the T7 promoter inducible by the addition of IPTG to 

the bacterial culture, and also carries ampicillin resistance. The PsNTP9 and 

PsNTP9-DM apyrase protein constructs are N-truncated, in order to use the 

periplasmic localization signal of the pET-22b plasmid, shown in figure 2.1.1 

2.1.2 Transformation of BL21(DE3) cells 

The plasmids featuring PsNTP9 and PsNTP9-DM constructs were incubated 

overnight with DH5α E. coli and plated on LB agar with ampicillin. After growth the 

colonies were PCR cycled. The PsNTP9 and PsNTP9-DM genes, and cloning and 

PCR primer sequences are shown in figure 2.1.2 A-D, and figure 2.1.3. The DH5α 

strain was used to transform BL21-DE3 E. coli, which were used for expression. Then 

transformation was verified by sequencing, at the MBS core facility.  
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2.2 Results 

The pET22B vector was an excellent tool. Competent cells were transformed 

successfully, and were segregated using the plasmid’s antibiotic resistance. 

Transformation was verified by sequencing the incorporated plasmid in the MBS core 

facility. PCR products and colony PCR results are shown in figure 2.2.1. The designed 

genetic mechanisms of periplasmic location, and induction using IPTG and the Lac 

operon, allowed control of expression and localization of PsNPSNTP9 and PsNTP9-

DM to the periplasm. Upon testing IPTG induction, the expressed histidine tags on 

PsNTP9 and PsNTP9-DM were detected by immunoblot (Figure 2.2). 
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Chapter 3: Growth of transformed BL21 cells, expression, 

fractionation, purification and detection of PsNTP9 and PsNTP9-

DM 

3.1 Materials and methods 

3.1.1 Growth and expression 

The following steps were completed for PsNTP9 and PsNTP9-DM samples: 

transformed BL21 cells were inoculated to a 2 mL Terrific Broth (TB) with ampicillin 

and 1% glucose media, and shaken for 5 hours in two sets of PsNTP9 and PsNTP9-

DM transformed cells, at 30°C and 37°C variables, for a total of 4 samples. The 2 mL 

starters were then used to inoculate 4 separate 500mL volumes which were incubated 

overnight at 37C at 225 rpm on a shaker table. The following day the cultures were 

harvested and transferred into 250 mL centrifuge bottles. These were centrifuged for 

10 minutes at 5K rpm in a Beckman with JA-10 rotor. Then each sample was 

decanted and the pellet was resuspended in 20 mL of media with antibiotic, and then 

returned to a fresh batch of 500ml of media with antibiotic.  

Next, expression was induced by addition of 500 µL of 1M IPTG to each 

sample, and they were shaken at 25°C for 5 hours. Then cultures were harvested and 

centrifuged 10 minutes and decanted. Pellets were saved overnight in a -80°F freezer. 

Later repetitions of this procedure involved optimization and the 37°C 

incubation temperature variable was no longer used after the initial experiment. 

Western blot figure 3.1.1 shows greatest induction at 30°C. 
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3.1.2 Fractionation of cells 

Frozen pellets were thawed and resuspended in 20 mL of cold sucrose 

solution (0.75M sucrose, 0.1M Tris adjusted to pH 8.0 with HCL, filtered, 4°C), and 

transferred equally to 45 mL Falcon tubes. 1 mL of 10 mg/mL lysozyme in sucrose 

solution was added to each tube, and 10 mL of 1mM EDTA was added drop-wise with 

gentle shaking. The samples were then shaken at 4°C for 1 hour, and 0.5 mL of MgCl2 

was added drop-wise while shaking. The samples were shaken again at 4°C for 1 

hour and centrifuged 20 minutes at 20K rpm. Supernatant was then transferred to 

Snakeskin dialysis tubing and dialyzed against 4L of dialysis buffer (10mM Tris pH 

8.0, 0.5M NaCl). This was done in order to remove EDTA to prevent interference with 

the IMAC recovery step. 

Optimization dictated that later fractionations use 15 mL of cold sucrose, 

rather than 20 mL. This was changed to effectively increase the concentrations of the 

other reagents in the procedure, in order to increase the effectiveness of apyrase 

protein extraction. On April 13, a second fractionation protocol was substituted, 

though the results were unfavorable, so it was only used that once, and the original 

protocol was used for later repetitions. 

3.1.3 Purification with IMAC resin 

In separate tubes 1 mL IMAC resin was washed in each of 4 Biorad disposable 

columns with 10 mL water, followed by 2mL Ni2+ charging buffer (50mM nickel 

sulfate), then 10 mL of wash buffer (20mM Tris pH 8.0, 0.5M NaCl, 20mM imidazole). 

Each dialysate was transferred to a 45 mL Falcon tube, and adjusted to 10mM 

imidazole from 1M stock. Next the prepared resin was divided, 0.5 mL each into the 
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Falcon tubes with dialysate, and the samples were shaken at 4°C for 4 hrs. Then the 

samples were centrifuged at 1K for 2 minutes and decanted to collect the resin, which 

was resuspended in 10 mL of wash buffer and centrifuged again and decanted. The 

samples were resuspended once more and the resin was collected by pouring into 

the columns. Then the columns were washed once more with 10 mL of wash buffer. 

Initially, the columns were eluted with 1mL of elution buffer, but on March 19th the 

elution volume was increased to 4 mL. During elution the color of the resin was 

observed to turn white, which indicates successful elution. 

Starting on March 13, we began charging the IMAC resin with 10 mL of 0.2M Ni2+ 

charging buffer. This was done in order to potentially increase the binding strength 

and volume of nickel held in the resin, so that more protein could be bound and eluted. 

Protein concentrations were determined using the Bradford method. 

 

3.1.4 Detection and identification of purified PsNTP9 and PsNTP9-DM 

Samples were heated to 96°C for 10 minutes, then run on SDS- PAGE, 4-12% 

polyacrylamide 1.5 mm gel in MOPs running buffer at 150V. Gels were stained with 

Coomassie blue on a shaker table at room temperature (RT) for 2 hrs. Poured off 

Coomassie Blue stain, and added destaining buffer. Destaining buffer was changed 

after 20 minutes, then again after 1 hour, and allowed to sit on the shaker table 

overnight at RT. Eluate showed single visible bands for each of the purified samples 

at ~47 KD. This indicated that the proteins of interest were present and Western blots 

(WB) were performed for confirmation. Blotted to PVDF membrane, blocked the 

background with 5% milk with PBST, and treated with a commercial horse radish 
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peroxidase (HRP) conjugated antibody called HisProbeTM (Thermo-Scientific 

#15165)1:3500, prepared in 5% milk, to identify the presence of the histidine tags of 

our constructs. The blot was then treated with ECL substrate and visualized in the 

G:box imager in the MBS core facility. 

In order to increase the effectiveness of the blot transfer, starting on March 21st, the 

PVDF membrane was soaked in methanol, 12 filters were used, and they were 

presoaked in 1M Tris-Gly and 40% methanol and 1%SDS. 

3.2 Results 

Cell propagation was without issues, cells were able to colonize new ampicillin 

containing media in high concentration. Immunoblots performed on extract of induced 

cells showed good signal. The fractionation procedure was verified to work well, given 

the concentration of protein samples run on SDS PAGE and Western blot. Some 

optimization was attempted, though even against Qiagen’s “Protocol for preparation 

of 6XHis-tagged periplasmic proteins from E.coli,” the initial fractionation procedure 

outperformed, providing higher concentrations of purified protein. Western blot of 

purified PsNTP9 showing concentrations after induction and purification is figure 

3.2.1. 

The purification procedure seemed to work well during execution, the IMAC 

resin turned blue when charged, and turned back white during elution, indicating that 

the resin bound the nickel in the charging buffer, and released it during elution. 

However, as the yield was less than expected, the concentration of the charging buffer 

was amplified by 80x. Similarly, 10 mL of 0.2M of charging buffer was used to 
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potentially increase binding and thus yield. The results from this are in figure 3.2.2 

Doubling the imidazole concentration of the elution buffer was attempted next. 

Though it was possible to elute workable volumes from the affinity column, it is 

expected that much of the PsNTP9 and PsNTP9-DM proteins remained bound to the 

resin. This could be due to aggregation with other proteins with multiple histidine 

residues, or due to the high specificity of the columns for our proteins of interest (6 

contiguous histidines). It could also be due to overexpression of our proteins of 

interest during the induction phase causing aggregation, and formation of inclusion 

bodies which can complicate binding and elution. Incubation time with the resin was 

increased from 4 to 5 hours. Since dialysis was also performed before detection, it 

was not ruled out as a suspect for loss of protein, so a protease inhibitor cocktail was 

added to the dialysis tubes. Though the combined effect of these changes allowed for 

elution of detectable quantities of purified protein, it is expected that some of the 

extracted protein was being kept bound to the resin. SDS PAGE gels and Western 

blots often showed a lower than desired signal, though some blots were successful, 

and bound antibodies with a strong signal. (Fig. 3.2.1) 
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Chapter 4: Apyrase activity assay and phosphate assay 

4.1: Materials and methods 

4.1.1 Apyrase activity assay 

We followed the protocol described by Steinebrunner et al. (2000), Molecular and 

biochemical comparison of two different apyrases from Arabidopsis thaliana, for the 

apyrase activity assay. 

Prior to performing this step, the purified PsNTP9 and PsNTP9-DM apyrase 

samples selected for potentially higher protein concentrations were dialyzed to 

remove the elution buffer. The assay was performed in duplicate on a 96 well plate. 

Selected PsNTP9 and PsNTP9-DM samples were incubated in assay buffer (100 µL 

60mM HEPES ph7.0, 3mM MgCl2, 3mM CaCl2) prepared separately with 3mM ATP, 

and AMP substrates at 4 different volumes of substrate per preparation (50,100,150, 

and 200 µL). This was done for optimization, and we noted that 50 µL of substrate 

with 100 µL buffer was sufficient from results. The ATP and AMP substrate stocks 

were 100mM prepared in 2 mL HEPES buffer. The substrate stocks were aliquoted 

into 2mL Eppendorf tubes. All variable reactions were carried out as follows: 100 µL 

of apyrase assay buffer, including substrate, was added to each of the variable plate 

wells and negative control (buffer only in 1 well). The positive control used IPTG 

induced raw cell lysate and stock concentration ATP. Then 50-200 µL of the purified 

and dialyzed PsNTP9 and PsNTP9-DM samples were added to their designated 

wells. Then the plate was covered in foil and placed on a shaker platform for 1 hour 

45 minutes at RT, after which it was taken to the MBS core facility to have the plate 

read in a spectrophotometer. 
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This assay was repeated, adding the substrate ADP prepared as described 

above, and using the same controls. Each of the 4 apyrase samples (PsNTP9 and 

PsNTP9-DM purified on 3/28, and PsNTP9 and PsNTP9-DM purified on 4/19) was 

represented using 8 wells for each substrate (2 wells each for PsNTP9 and PsNTP9-

DM purified on each date). This time the protein samples were all in 50 µL volumes. 

After filling the wells, the plate was wrapped in foil and placed on a shaker platform 

for 1 hour 30 minutes. 

4.1.2 Phosphate assay 

This colorimetric assay was originally performed on the same microtiter plate as the 

apyrase activity assay. First a standard curve was created using known molarities of 

ATP ranging up to 200µM. The first phosphate assay was done with corresponding 

volumes to the first apyrase assay run, except at ½ total volume to allow for addition 

of the reagent C without overfilling. The wells were first loaded with 125 µL of reagent 

C. Reagent C components were prepared ahead and mixed the day of the assay. The 

recipe includes 2 mL water, 1 mL 6N sulfuric acid, 1 mL of 2.5% ammonium molybdate 

and 1 mL 10% ascorbic acid. 

Once the wells were loaded with 125 µL of reagent C, the reactions for each 

condition of the apyrase assay were transferred to 2 wells each, with 8 wells used per 

completed reaction. The positive control was one well for ATP alone, and the negative 

control was one well with reagent C alone. The phosphate assay reactions were 

allowed to incubate for 1 hour 10 minutes at 25°C. Then the plate was taken to the 

MBS core facility and read. The next phosphate assay was performed using a 

separate plate, and 3 substrates were used: ATP, ADP, and AMP, and each 
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phosphate assay reaction was done in triplicate, except for AMP, which was only done 

in duplicate since little to no activity was expected. Results are shown in figure 4.1.2. 

4.2 Results 

 There were no problems in executing the procedures other than a few errors 

in pipetting, which were corrected. The visual indication of activity was given with the 

colorimetric phosphate assay. First a standard curve was created using known 

concentrations of phosphates, and the results were linear as expected. The validity 

of the standard curve, apyrase activity and phosphate assays were confirmed when 

the plates were read. The color change (clear to light blue to dark blue) began very 

quickly for PsNTP9, especially with ATP. PsNTP9-DM samples changed more slowly 

and when the assay was ended after 1 and half hours, the color of the PsNTP9+ATP 

wells were the darkest, followed by PsNTP9-DM+ATP, which was close in color to 

PsNTP9+ADP and PsNTP9-DM+ADP. All wells with AMP stayed a very light blue. 

The results are shown in figure 4.2. 
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Chapter 5: Figures 

Figure 2.1.1 : The pET-22b(+) vector carries an N-terminal pelB signal sequence for potential 
periplasmic localization, plus optional C-terminal His•Tag® sequence. Unique sites are shown 
on the circle map. Note that the sequence is numbered by the pBR322 convention, so the T7 
expression region is reversed on the circular map. The cloning/expression region of the coding 
strand transcribed by T7 RNA polymerase is shown below (at bottom). For PsNTP9 and 
PsNTP9-DM insertion the sites where the plasmid was cut are between Nco I and BamH I. 
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2.12 A 
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2.12 B 
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Figure 2.1.2 C 

Figure 2.1.2 PsNTP9 and PsNTP9-DM protein-coding sequences are shown before and after 

modification for preparation of insertion to the pET22B plasmid. A. The PsNTP9 full length 

CDS was the template for both constructs. B. Shows the truncated version of the protein, 

where only deletions were used to prepare the coding sequence for insertion. C. The double 

mutant has two single nucleotide changes to create a second calmodulin binding domain. 
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Figure 2.1.3 A 

Figure 2.1.3 B 

(KD) 

Figure 2.1.3 C 
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Figure 2.1.3 D 

Figure 2.1.3 A. PCR product of Ps-NTP9–pET22B B. PCR product of PsNTP9-DM, C. Colony 

PCR of PsNTP9-pET22B, D. Colony PCR of PsNTP9-DM – pET22B. 

2.1.4 Mutations 1&2 shown at top were made by site directed mutagenesis to PsNTP9 in order 

to code for a second calmodulin binding domain for the PsNTP9-double mutant. The primers 

shown above were used for cloning and also colony PCR. The names above the sequences 

show the nuclease cut sites for insertion.  
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Figure 2.2 The C-terminal His•Tag® sequence on PsNTP9 and PsNTP9-DM were detected 

by immunoblot using a horse radish peroxidase (HRP) conjugated antibody called HisProbeTM 

(Thermo-Scientific #15165)1:3500. 
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Figure 3.1.1 The whole cell lysate, after induction by IPTG at 30°C shows the greatest 

induction, as determined by the darker band within the smear of proteins found in the raw 

protein extract that is indicated with the red arrow. 
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Figure 3.2.1 Western blot showing truncated PsNTP9 and PsNTP9-DM concentrations in 

whole cell lysate and elution fractions after purification on affinity column. The red arrow points 

to a strong band in PsNTP9 elution 2 fraction. This band indicates a strong presence of 

PsNTP9, identified by antibody conjugation. 
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Figure 3.2.2 This gel shows signal in each of the elution fractions 1 through 3, with the 

strongest bands in the first and second elution fractions. Elution 2 indicates the most protein 

at 50kD in both constructs. 
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FIGURE 4.2 A

 

Figure 4.2 B 

 

PsNTP9 and PsNTP9-DM apyrase assay used 03/28 elution protein. 50 µl of elution protein was 

used for each reaction. The concentration of PsNTP9 and PsNTP9-DM protein is 20.3 ng/µL and 

22.1 ng/µL, respectively. 
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Chapter 6: Discussion 

There have been so many advances in genetic engineering that we 

now have multiple methods and resources for producing bioactive recombinant 

proteins, even human enzymes for use in medical treatment (Schmidt et al. 1999; 

Sockolosky et al., 2013). The pET22b plasmid is a member of the pET expression 

system commercially available from Novagen. pET22b has all the necessary 

selectivity, cloning, and other user-friendly features, including a histidine tag allowing 

for affinity column purification, and also an inducible periplasmic expression system 

using the Lac operon. Using this plasmid, it was possible to have a complete workable 

protocol for the production of testable quantities of PsNTP9 and PsNTP9-DM, a 

double mutant (DM) designed with a second calmodulin-binding domain. 

PsNTP9 is a nuclear pea apyrase, which we have induced in E. coli with a 

periplasmic localization signal present in the pET22b vector. The addition of Isopropyl 

β-D-1-thiogalactopyranoside (IPTG), which is a molecular mimic of allolactose, 

stimulates the Lac operon by removing the Lac repressor. The hybrid T7 lac promoter 

and lac I gene encoding the repressor are included in the pET22b plasmid. Successful 

cloning was all that was required to have expression of our proteins of interest. 

The DH5α strain was developed by biologist Douglas Hanahan as a cloning 

strain with multiple mutations to enable high-efficiency transformations with a color 

change indicator for verification. Interestingly, this strain has been used for biological 

data storage experiments, presumably for its integrity. We used it to transform the 
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BL21 cells that were used for expression of PsNTP9 and PsNTP9-DM, for which it 

worked very well. 

The expression of our proteins in the periplasm was important, and was done 

in order to try to avoid the formation of inclusion bodies, which is necessary to 

overcome in cytoplasmic overexpression (Sockolosky et al., 2013). When these 

insoluble aggregates form, steps must be taken to separate them.  The aggregated 

proteins need to be treated with a denaturant or a detergent and refolded, which adds 

extra steps replete with complications, and could compromise the results of activity 

assays. By having our proteins expressed in the periplasm, isolation could be 

performed in native conditions. However, there is a potential complication: Protein 

expression could be so high that aggregates form even in the periplasm. If this does 

occur, it should be to a much lesser degree than happens in cytoplasmic expression, 

and is arguably unavoidable without changing the native conditions for extraction. 

As described in Chapter 3, IMAC resin was used to select for the histidine tags 

added to the N-terminal of our PsNTP9 and PsNTP9-DM. IMAC stands for 

immobilized metal anion chromatography. Ni2+ was the metal anion selected for its 

demonstrated ability to bind the 6xHis tag. There were some problems to overcome 

with this scheme, such as the natural occurrence of other proteins with domains rich 

in histidine residues. The specificity of the resin for the histidine ions needs to be high 

enough to bind our proteins of interest, but low enough to prevent excess binding of 

other proteins. When the specificity of the resin is too high, the resin quickly becomes 

saturated, and some amount of our tagged proteins washes through the affinity 

column. Imidazole is used in the incubation and elution of the affinity column. Raising 
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the amount of imidazole of the wash buffer used can reduce specificity, and potentially 

reduce non-specific binding.  

Sometimes the specificity of Ni2+ resin is high enough that a 6xHis tag may 

require additional measures to properly elute the proteins of interest. In other words, 

much of our protein may have been left on the resin. There are many measures that 

can be taken to increase the effectiveness of elution, though some solutions present 

their own problems or require special equipment. We kept 4 elution volumes and 

checked them separately, though it is sometimes recommended that serial dilutions 

be performed up to 20 times, and evaluate each fraction for protein concentration and 

size in kilodaltons (kD). As mentioned, increasing the concentration of imidazole 

affects the specificity of the resin. Raising the amount of imidazole in the elution buffer 

would likely elute more protein. This could be done in standard amounts on a gradient 

to find the right amount to elute as much protein as possible. Time wise this is 

exhausting, especially without using HPLC to segregate for our protein size. 

Changing the pH of the elution buffer could have the effect of increasing the volume 

of eluted protein, though it could also denature the proteins. Adding EDTA to the 

elution buffer in high enough concentration would undoubtedly remove everything 

from the resin, though this method would greatly reduce the concentration of our 

proteins of interest in the eluate. There are more options for increasing elution, but 

these were the ones we considered. 



29 
 

 The purpose of this research, individually, is to characterize PsNTP9, a pea 

apyrase. However, an important impact of research in the field of extracellular ATP 

signaling is that the information discovered can be applied across kingdoms of 

organisms. Research conducted on plants may impact our understanding of human 

physiology, and vice versa. For instance, in the last 3 decades, NTPDases have been 

cloned and characterized in mammals, invertebrate animals, microbes and plants. 

Last year New Zealand scientists revealed the first structures of NTPDases from 

legume plant species Trifolium repens (7WC) and Vigna unguiculata subsp. cylindrica 

(DbLNP) (Summers et al, 2017). Study of the structure revealed that the apyrases 

have a central hinge region, and have at least two conformations depending on the 

molecule and co‐factors bound.  This phenomenon has been previously described in 

the brown rat, Rattus norvegicus and the bacteria Legionella pneumophila, and 

Toxoplasma gondii suggesting a common catalytic mechanism across the domains 

of life (Summers et al, 2017).  

The field of NTP signaling has been expanded most in animal systems, due to the 

relevance to human health. The study of the impact of eATP, for example, on 

mammalian physiology covers a variety of systems and patho-physiological 

processes including vascular and nervous systems. Robson et al. (2006) describes 

acute effects on cellular metabolism, adhesion, activation and migration, as well as 

protracted impacts upon developmental responses, inclusive of cellular proliferation, 

differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological 

diseases and rejection of transplanted organs and cells by the immune system. Future 

impacts may involve the development of new therapeutic strategies for organ 
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transplantation and cardiovascular, gastrointestinal and neurological diseases 

(Robson et al, 2006). 

A number of different physiological effects of apyrase signaling in plants are 

known as well, including the operation of stomates. The opening and closing of 

stomates is concurrent with a release of ATP from the guard cells. This led to the 

discovery that eATP is involved with the opening and closing of stomates through the 

activation of a heterotrimeric G-protein phosphatase. This is confirmed by multiple 

studies (Hao et al.,2012; Clark et al., 2013). In Arabidopsis thaliana (At), AtAPY1, and 

AtAPY2 are known to be affected by changes in eATP. The discovery of this led to 

our understanding that AtAPY1&2 are upregulated upon wounding, cell expansion 

and hypertonic stress (Wu et al., 2007; Kim et al., 2009). Given these physiological 

effects, AtAPY1&2 were grouped with ecto-apyrases. Since 2012, there have been 

several more localization studies, with several asserting that expression is in the Golgi 

apparatus (Schiller et al., 2012; Chiu et al., 2012;  Massalki et al., 2014). Given that 

the endomembrane system is involved with exocytosis, apyrase receptors located 

here could still be integral to signal transduction. As new components of nucleotide 

signaling are sought out, the search for homogeneity, or domain similarity has been 

a leading factor in their discovery and characterization. 
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Chapter 7: Conclusions 

Pisum sativum PsNTP9 was able to be truncated and modified, and two 

vectors were made by inserting PsNTP9 and the altered double mutant (PsNTP9- 

DM) into the pET22B plasmid. This success allowed for the cloning and 

transformation of Escherichia coli cells, which in turn allowed us to express PsNTP9 

and PsNTP9-DM ectopically. The transformed bacteria were able to be grown and 

have expression induced.  Upon fractionation and purification, a significant yield a 

significant amount of protein usable for characterization was obtained. It would have 

been desirable to have some calmodulin to use in conjunction with NTP9, and DM 

especially, in the apyrase activity assay. I believe that there could be a significant 

increase in activity in both constructs, and perhaps more-so with calmodulin bound 

DM. Additionally, antibodies are being developed for PsNTP9, and these will be 

directly useful in this research, allowing for more accurate identification. 

The purification protocol used still requires optimization, and though it was 

used to some success, it can still be improved. Perhaps the use of a histidine tag can 

be done away with once the antibodies being tested are proven viable. Another type 

of affinity chromatography, perhaps cross-linking antibodies with sephadex, may be 

used to isolate proteins using the antibodies being developed. The use of such a tool 

would be invaluable to the current research, as it would enable the exclusion of the 

multitude of histidine containing proteins that are co-purified and co-identified using 

histidine’s affinity for metal ions. Perhaps the antibodies might be used to identify 

other potential purinoceptors as well. 



32 
 

 There are a few measures which might still be taken to optimize expression, 

fractionation, and purification, even without new antibodies. Perhaps using a larger 

cell culture to express and isolate from, or a slightly lower quantity of IPTG would 

reduce aggregation, allowing more protein of interest to bind to the affinity column.  

 The results of the apyrase assay were not exactly as expected; PsNTP9 had 

more activity than PsNTP9-DM on the apyrase and phosphate assays performed. 

This could be due to having nearly equal concentrations of protein, but lower 

concentrations of the proteins of interest. A Western blot using a more specific 

antibody could give an accurate determination of this. Possible unequal amounts of 

our proteins of interest could be a source of complication with the activity assays. 

 Though there are still a few improvements to be made with these methods, 

the results have shown that they can be effective in advancing this field of study. 

Researchers must continue to look across the Kingdoms for clues, and use proven 

techniques as well as experimentation in order to resolve them. 
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