5,216 research outputs found

    Towards a Semantic-based Approach for Modeling Regulatory Documents in Building Industry

    Get PDF
    Regulations in the Building Industry are becoming increasingly complex and involve more than one technical area. They cover products, components and project implementation. They also play an important role to ensure the quality of a building, and to minimize its environmental impact. In this paper, we are particularly interested in the modeling of the regulatory constraints derived from the Technical Guides issued by CSTB and used to validate Technical Assessments. We first describe our approach for modeling regulatory constraints in the SBVR language, and formalizing them in the SPARQL language. Second, we describe how we model the processes of compliance checking described in the CSTB Technical Guides. Third, we show how we implement these processes to assist industrials in drafting Technical Documents in order to acquire a Technical Assessment; a compliance report is automatically generated to explain the compliance or noncompliance of this Technical Documents

    Local and Global Explanations of Agent Behavior: Integrating Strategy Summaries with Saliency Maps

    Get PDF
    With advances in reinforcement learning (RL), agents are now being developed in high-stakes application domains such as healthcare and transportation. Explaining the behavior of these agents is challenging, as the environments in which they act have large state spaces, and their decision-making can be affected by delayed rewards, making it difficult to analyze their behavior. To address this problem, several approaches have been developed. Some approaches attempt to convey the global\textit{global} behavior of the agent, describing the actions it takes in different states. Other approaches devised local\textit{local} explanations which provide information regarding the agent's decision-making in a particular state. In this paper, we combine global and local explanation methods, and evaluate their joint and separate contributions, providing (to the best of our knowledge) the first user study of combined local and global explanations for RL agents. Specifically, we augment strategy summaries that extract important trajectories of states from simulations of the agent with saliency maps which show what information the agent attends to. Our results show that the choice of what states to include in the summary (global information) strongly affects people's understanding of agents: participants shown summaries that included important states significantly outperformed participants who were presented with agent behavior in a randomly set of chosen world-states. We find mixed results with respect to augmenting demonstrations with saliency maps (local information), as the addition of saliency maps did not significantly improve performance in most cases. However, we do find some evidence that saliency maps can help users better understand what information the agent relies on in its decision making, suggesting avenues for future work that can further improve explanations of RL agents

    Towards an integrated discovery system

    Get PDF
    Previous research on machine discovery has focused on limited parts of the empirical discovery task. In this paper we describe IDS, an integrated system that addresses both qualitative and quantitative discovery. The program represents its knowledge in terms of qualitative schemas, which it discovers by interacting with a simulated physical environment. Once IDS has formulated a qualitative schema, it uses that schema to design experiments and to constrain the search for quantitative laws. We have carried out preliminary tests in the domain of heat phenomena. In this context the system has discovered both intrinsic properties, such as the melting point of substances, and numeric laws, such as the conservation of mass for objects going through a phase change

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context
    • …
    corecore