7 research outputs found

    IIR Youla-Kucera parametrized adaptive feedforward compensators for active vibration control with mechanical coupling

    Get PDF
    International audienceAdaptive feedforward broadband vibration (or noise) compensation requires a reliable correlated measurement with the disturbance (an image of the disturbance). The reliability of this measurement is compromised in most of the systems by a "positive" internal feedback coupling between the compensator system and the correlated measurement of the disturbance. The system may become unstable if the adaptation algorithms do not take in account this positive feedback. Instead of using classical IIR or FIR feedforward compensators, the present paper proposes and analyses an IIR Youla - Kucera parametrization of the feedforward compensator. A model based central IIR stabilizing compensator is used and its performance is enhanced by the adaptation of the parameters (Q-parameters) of an IIR Youla-Kucera filter. Adaptation algorithms assuring the stability of the system in the presence of the positive internal feedback are provided. Their performances are evaluated experimentally on an active vibration control (AVC) system. Theoretical and experimental comparisons with FIR Youla-Kucera parametrized feedforward compensators and IIR feedforward compensators are provided

    Commande robuste et calibrage des systèmes de contrôle actif de vibrations

    Get PDF
    Dans cette thèse, nous présentons des solutions pour la conception des systèmes de contrôle actif de vibrations. Dans la première partie, des méthodes de contrôle par action anticipatrice (feedforward) sont développées. Celles-ci sont dédiées à la suppression des perturbations bande large en utilisant une image de la perturbation mesurée par un deuxième capteur, en amont de la variable de performance à minimiser. Les algorithmes présentés dans cette mémoire sont conçus pour réaliser de bonnes performances et maintenir la stabilité du système en présence du couplage positif interne qui apparaît entre le signal de commande et l'image de la perturbation. Les principales contributions de cette partie sont l'assouplissement de la condition de Stricte Positivité Réelle (SPR) par l'utilisation des algorithmes d'adaptation Intégrale + Proportionnelle et le développement de compensateurs à action anticipatrice (feedforward) sur la base de la paramétrisation Youla-Kučera. La deuxième partie de la thèse concerne le rejet des perturbations bande étroite par contre-réaction adaptative (feedback). Une méthode d'adaptation indirecte est proposée pour le rejet de plusieurs perturbations bande étroite en utilisant des filtres Stop-bande et la paramétrisation Youla-Kučera. Cette méthode utilise des Filtres Adaptatifs à Encoche en cascade pour estimer les fréquences de perturbations sinusoïdales puis des Filtres Stop-bande pour introduire des atténuations aux fréquences estimées. Les algorithmes sont vérifiés et validés sur un dispositif expérimental disponible au sein du département Automatique du laboratoire GIPSA-Lab de Grenoble.In this thesis, solutions for the design of robust Active Vibration Control (AVC) systems are presented. The thesis report is composed of two parts. In the first one, feedforward adaptive methods are developed. They are dedicated to the suppression of large band disturbances and use a measurement, correlated with the disturbance, obtained upstream from the performance variable by the use of a second transducer. The algorithms presented in this thesis are designed to achieve good performances and to maintain system stability in the presence of the internal feedback coupling which appears between the control signal and the image of the disturbance. The main contributions in this part are the relaxation of the Strictly Positive Real (SPR) condition appearing in the stability analysis of the algorithms by use of Integral + Proportional adaptation algorithms and the development of feedforward compensators for noise or vibration reduction based on the Youla-Kučera parameterization. The second part of this thesis is concerned with the negative feedback rejection of narrow band disturbances. An indirect adaptation method for the rejection of multiple narrow band disturbances using Band-Stop Filters (BSF) and the Youla-Kučera parameterization is presented. This method uses cascaded Adaptive Notch Filters (ANF) to estimate the frequencies of the disturbances' sinusoids and then, Band-stop Filters are used to shape the output sensitivity function independently, reducing the effect of each narrow band signal in the disturbance. The algorithms are verified and validated on an experimental setup available at the Control Systems Department of GIPSA-Lab, Grenoble, France.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Adaptive Attenuation of Unknown and Time Varying Disturbances - Revisited after ECC13, Zurich

    No full text
    http://technion.ac.il/~issc/Program/pdf/Landau_slides.pdfInternational audienceIn many classes of applications like active vibration control and active noise control the disturbances can be characterized by their frequencies content and their location in a specific region in the frequency domain. The disturbances can be of narrow band type (simple or multiple) or of broad band type. A model can be associated to these disturbances. The knowledge of this model allows to design an appropriate control system in order to attenuate (or to reject) their effect upon the system to be controlled. The attenuation of disturbances by feedback is limited by the Bode Integral and the "water bed" effect upon the output sensitivity function. In such situations the feedback approach has to be complemented by a "feedforward disturbance compensation" requiring an additional transducer for getting information upon the disturbance. Unfortunately in most of the situations the disturbances are unknown and time-varying and therefore an adaptive approach should be considered. The generic term for adaptive attenuation of unknown and timevarying disturbances is "adaptive regulation" (known plant model, unknown and time-varying disturbance model). The paper reviews a number of recent developments for adaptive feedback compensation of multiple unknown and timevarying narrowband disturbances presented at ECC13, Zurich (benchmark on adaptive regulation). Il also reviews recent developments in adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented. Some open research problems will be mentioned in the conclusion

    Advances in Youla-Kucera parametrization: A Review

    Get PDF
    International audienceYoula-Kucera (YK) parametrization was formulated decades ago for obtaining the set of controllers stabilizing a linear plant. This fundamental result of control theory has been used to develop theoretical tools solving many control problems ranging from stable controller switching, closed-loop identification, robust control, disturbance rejection, adaptive control to fault tolerant control.This paper collects the recent work and classifies the maccording to the use of YK parametrization, Dual YK parametrization or both, providing the latest advances with main applications indifferent control fields. A final discussion gives some insights on the future trends in the field

    Disturbance attenuation in linear systems revisited

    Get PDF
    A variety of methods have been proposed for attenuating or rejecting disturbances in linear systems. Most of the approaches, however, are targeting the performance either near resonance or across the whole frequency range. Weighting functions can be utilized to shape the frequency response function over target frequency band but they are usually of rule-of-thumb nature. A methodology is necessitated for designing controllers with performance specified at any discrete frequency or over any desired frequency band. The paper aims to develop such a methodology. Besides this, the proposed method can tell performance limitations and determine the problem of existence of optimal controllers, as well as providing a useful framework to improve the performance of an existing controller. A number of important results are obtained and these results are subsequently validated through a practical application to a rotor blade example
    corecore