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Abstract 

A variety of methods have been proposed for attenuating or rejecting disturbances in linear systems. Most of the 

approaches, however, are targeting the performance either near resonance or across the whole frequency range. 

Weighting functions can be utilized to shape the frequency response function over target frequency band but 

they are usually of rule-of-thumb nature. A methodology is necessitated for designing controllers with 

performance specified at any discrete frequency or over any desired frequency band. The paper aims to develop 

such a methodology. Besides this, the proposed method can tell performance limitations and determine the 

problem of existence of optimal controllers, as well as providing a useful framework to improve the 

performance of an existing controller. A number of important results are obtained and these results are 

subsequently validated through a practical application to a rotor blade example. 

Key words: disturbance attenuation, discrete frequency control, performance limitation & improvement. 

1. Introduction 

Disturbance attenuation/rejection represents one of the most important problems in control system design. 

Conventional approach to disturbance attenuation is the classical sensitivity shaping that eventually cultivates 

into a unified regulator theory in a generalized plant setup [1-3]. In this setup, the disturbance attenuation 

concerns the problem of minimizing the gain (usually in H2/H∞ norm) from disturbance input to regulated 

output [4, 5]. The H2/H∞ optimization methodology is powerful since it can also handle constraints by 

formulating into LMIs [6]. Indeed, within this framework, there exists numerous literature on tackling the 

disturbance attenuation problem (subject to uncertainty, saturation, delay etc), e.g. via state feedback, dynamic 

feedback, eigenstructure assignment, adaptive controls etc. In fact, this H2/H∞ optimization methodology to 

disturbance attenuation has been extended into nonlinear systems [7, 8], discrete event and multi-agent systems 

[9, 10], hybrid dynamical systems [11-13] and networked control systems [14-16] etc. 

The above methodology, however, aims to achieve minimization of H2/H∞ norm over all frequencies. 

Typical filter design exists for shaping/weighting the frequency range of interest, e.g. the H∞ optimization tries 

to “bring down” the peak magnitude of the frequency response function, but it is not transparent for the design 
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methodology on how to shape the performance over a frequency band  N1̍ , while allowing performance 

deterioration outside  N1̍ .  

While H2/H∞ optimization methodology to disturbance attenuation arises from control community, there 

are different approaches coming from noise and vibration control community. In this field, disturbance 

attenuation is mainly handled through internal model principle and adaptive disturbance estimation (see the 

review article [17]). The performance index is usually defined as of a minimum variance type (with weightings), 

which is essentially equivalent to minimizing a weighted mean square error [18-20]. Henceforth, the approaches 

are not targeting the performance defined over a frequency band. Even though the minimum variance type of 

square errors is defined at narrow band frequencies, simply synthesizing an optimal controller using optimal 

control methodology does not provide information on important problems such as the limit of performance at 

the desired frequency. In fact, the problem of determining limit of performance is an important issue that has 

unfortunately overlooked for many design approaches. The mixed sensitivity method takes care of this issue by 

minimizing H2/H∞ norm for both sensitivity S and complementary sensitivity T [21, 22]. But the choice of 

weighting functions for both S and T is of rule-of-thumb nature, aiming to maintain the ideal shapes for the 

norms of sensitivity functions (e.g. S small in low frequencies and T small over high frequencies etc). Important 

intuition on both solution existence and limit of performance at any discrete frequency 0  or over a frequency 

band  N1̍  is thus lost. 

Therefore, for disturbance attenuation, a methodology is necessitated that can possess the following 

features and capabilities simultaneously: 

(1) Allow disturbance attenuation at any specific frequency or over any desired frequency band; 

(2) Allow explicit determination of performance limitation for any frequency or over any desired frequency 

band; 

(3) Allow performance improvement to current control. 

In specific, feature (1) will provide a systematic sensitivity shaping method other than using weighting functions; 

feature (2) is even important, since prior to control design, a series of significant questions can be resolved, such 

as: 1) does a controller exists that suppresses disturbance in both S and T , and by how much (in dB)? 2) Does a 

controller exists that will annihilate S without enhancement of T? And similarly 3) Does a controller exists that 

will annihilate T without enhancement of S? Also 4) Can a controller be found that will suppress S whenever T 

is attenuated, and vise versa? 

        Feature (3) will be extremely important for the situation where the disturbance is known to be in a specific 

frequency band (but not necessarily being able to be modeled or even measurable). Then the proposed method 

can be utilized to further enhance the controller performance over the desired frequency band, while accepting 

performance deterioration outside that frequency band (due to Bode’s integral relationships or waterbed effect). 

In fact, no control design methodology is capable of exploiting performance limitation over a specific and 

explicit frequency band, but it can be demonstrated that the proposed method can always improve the current 

control design, be it H2/H∞, PID, or adaptive control etc over an explicitly defined frequency band  N1̍ . 

In this sense, the proposed method is claimed to be UNIVERSAL to performance improvement at any discrete 

frequency or over any desired frequency band. The above features form the contribution of the current paper. 
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They will be explained in the following sections: section 2 formulates the problem; section 3 and section 4 

consider the discrete frequency control and broad band control respectively; the above theoretical results are 

validated through their application to a rotor blade structure in section 5, while a comparative study with optimal 

control design is carried out in section 6. Finally, section 7 concludes the paper. 

2. Problem Formulation 

To fix the discussion, the systems dynamics is described by the following frequency response functions: 
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         (1) 

In the above equation, )( ju represents control input and )( jwi
the ith exogenous disturbance. 

)( jy  is the available feedback variable and sjzi )(  are the performance variables to be controlled but 

unavailable for feedback. The design objective is therefore to use only the feedback action  

)()()(  jyjKju   for simultaneous disturbance attenuation in both )( jy and )( jzi
 for 

ni 1 . 

To simplify the problem at discussion, it is further assumed that the exogenous disturbances sjwi )(   

can be expressed as )()(  jdCjw ii   for a frequency  and 
iC  is a complex number representing the 

gain and phase shift with respect to the same exogenous signal )( jd . Then (1) can be rewritten as follows, 

dropping off the dependence on frequency for easy reference: 
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      (2) 

Then with the only available feedback control u=Ky the performance response y to exogenous signal d  is given: 
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       (3) 

The performance response of  
iz  to d  is: 
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The design objective can therefore be formulated as finding a controller K such that 
ydT  and 

dzi
T  ( ni 1 ) 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



are attenuated for a frequency 0  or over a frequency band  N1̍ . Clearly, to address this problem, the 

following questions must be resolved: 

(1)  The feasibility of simultaneous attenuation in both )( jy and sjzi )(  using only control u=Ky; 

(2)  The level of attenuation in both )( jy and sjzi )(  wherever simultaneous attenuation is possible; 

(3)  Given a performance specification (e.g. attenuate )( jy  by 6dB while all sjzi )(   at least 3dB etc), 

synthesize an optimal controller )( jK  to fulfill the performance; 

(4) Robustness issues associated with the optimal design. 

The first question is of fundamental importance since answering existence questions is an important component 

of a good design methodology. However, an optimal controller should ultimately be produced. These problems 

are handled in the following sections. 

3. Discrete Frequency Controller Design 

To proceed, first consider the situation at a discrete frequency 0 .  Thus to attenuate the disturbance in 

)( 0jy , the feedback sensitivity 
1

00 )1(  KGS  must be suppressed; similarly, disturbance in 
iz  can be 

attenuated, provided that the disturbance response ratio for all sjzi )( 0  must be suppressed simultaneously. 

That is: 

1)( 0 jS                                                                                                                                                           (5) 

1)( 0 jRi    ni 1                                                                                                                                  (6) 

where: 
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Remark 1: The performance response of  y to d in equation (3), and 
iz  to d  in equation (4) can now be 

expressed as: 



n

k

kkyd CGST
1

0
and

 




n

k

kikidz CGRT
i

1

, hence S  and 
iR  are the ratio of the closed-loop to 

the open-loop response with respect to the exogenous input
iw  (not d ).  Thus the original design objective can 

be reformulated as finding a controller K such that the conditions (5) and (6) hold simultaneously for a 

frequency 0  or over a frequency band  N1̍ . 

Remark 2: For discrete frequency control, either adaptive estimations (feedforward or feedback) or notch filters 

are used for suppressing the harmonic disturbance at 0  in the field of noise and vibration control. These 

approaches are effective but will lose intuition into solution existence and limit of performance. 

        In the following, a pictorial method is developed to determine if a controller K exists that satisfies 

conditions (5) and (6) simultaneously. The key to solve this problem is to notice that at a discrete frequency 0 ,  
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S  and all iR s are simply complex numbers. Therefore equation (6) can be mapped onto the complex S-plane in 

equation (5) through the Möbius transformation defined by (7). The result of the mapping is n circles (call them 

R-circles) with circle-i having centre ( )(),(1 ii GimagGreal  ) and radius
iG , where 

iG  is defined as: 
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 for ni 1                                                                                                                  (8) 

This situation is illustrated in Fig. 1. It is noted that all the R-circles intersect unit S-circle at point (1, 0). At this 

point, 1 iRS  ni 1 . This implies that the performance responses of y and 
iz s are simply their 

open loop responses and the controller 0K .  For any other points, the levels of attenuation in y and 
iz  are 

the scaling with respect to the unit S-circle and 
iR -circle respectively. For example, for a point with Cartesian 

coordinate (a, b), the attenuation or enhancement in y  and 
iz (closed loop performance) is 22 ba   and 

   
i

ii

G

GimagbGreala
22

)(1)( 
 depending on their values being smaller or greater than unity. 

           

                                          (a)                                                                                  (b) 

Fig. 1: Geometry of S and R revealing fundamental performance limitation at a discrete frequency 

Figure 1(b) shows the situation for each iR -circle. It is seen that an optimal line connecting the origins 

of the two circles can be naturally defined: at the origin of S-circle, disturbance at )( 0jy  is annihilated while 

disturbance at )( 0jzi  is completely rejected at the origin of iR -circle; moving the point on the optimal line 

results in a compromise in the level of attenuation in between )( 0jy  and )( 0jzi . Thus the following 

important results follow from the inspection of Fig. 1: 

Proposition 1 (Feasibility of Simultaneous Reduction): Simultaneous attenuation in )( jy and all )( jzi
 

 ni 1  for a frequency 0  is feasible if and only if there exists intersection among all the R-circles and 

unit S-circle. 
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Proposition 2 (Level of Simultaneous Reduction): The level of reduction in )( jy and )( jzi
 for a 

frequency 0  is determined by the scaling with respect to the unit S-circle and iR -circles, respectively. 

Proposition 2 can be further delineated leading to a series of important results: 

Result 1:  A controller exists that provides infinite reduction in )( 0jzi  without any enhancement in )( 0jy  

if and only if the centre (1-G) locates inside the unit S-circle. 

Result 2:  A controller exists that provides infinite reduction in )( 0jy  without any enhancement in )( 0jzi   

if and only if the origin of the unit S-circle locates inside the mapped iR -circle. 

Result 3:  A controller exists that will reduce one whenever the other is reduced if and only if G=1. In this case, 

the mapped iR -circle coincides with the unit S-circle, and hence )( 0jy and )( 0jzi  are also attenuated by 

the same amount.  

Now choosing a particular point on the complex S-plane implies designating a particular value for the 

sensitivity )( jS  and this consequently means a particular design )( jK  is obtained. This is the optimal 

controller for the discrete frequency control. 

Proposition 3 (Optimal Controller Synthesis): The optimal controller )( jK  achieving the performance 

specified by the optimal choice )( jS  can be obtained as follows: 

)()(

1)(
)(

00 


jGjS

jS
jK


                                                                                                                               (9) 

Remark 3: Except at the special case 0)( jS  meaning annihilation in )( jy , which is impractical due to 

the requirement for infinite gain, the controller in (9) can be easily implemented at any discrete frequency using 

a recursive algorithm estimating the gain and phase shift of the harmonic signal. 

The above results are of great practical importance since they suggest a method of resolving Higher 

Harmonics Control (HHC) that has been challenging in vibration and noise control problems. In the HHC 

problem, the disturbance is dominated by a discrete set of frequencies with higher harmonics often causing 

spillovers. To handle this problem, control is designed for each harmonic of the disturbance (superposition 

principle is applied). Thus the number of controllers required is increased with the increasing number of 

harmonics to be controlled. However, the results above suggest a distinctive solution to this problem. 

Proposition 4 (HHC Problem): If there exists intersection among the R-circles of the higher harmonics to be 

controlled, then all the higher harmonics can be controlled by a single controller; if this intersection further 

intersects the unit S-circle, then this single controller will provide simultaneous reduction in all the performance 

variables. 

Remark 4: This result is remarkable since it can be used to reduce the number of controllers for the HHC 

problem. This can substantially reduce the complexity and cost associated with the implementation of the 

control system. 
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4. Broad Band Control and Performance Improvement 

With the fundamental results for discrete frequency control, the problem of finding a controller K such that the 

conditions (5) and (6) hold simultaneously over a frequency band  N1̍  can be resolved. But it is to be 

seen that this is a much involving problem since closed loop stability has to be concerned. It is also noted that 

the optimal choice )( jS  is to be varied from one frequency to the other over the target frequency band. This 

results in an optimal trajectory on the complex S-plane. However a further constraint should be put on the design 

freedom )( jS  so that closed loop stability is ensured. This can approached by defining 

1)()(   jSj , then it can be proved if )( j is a mapping of a stable function that also interpolates 

the unstable zeros of )(00 sG , then the resulting controller will internally stabilize the closed loop system for a 

stable but non-minimum phase )(00 sG . For a stable and minimum phase plant, the only constraint on the 

trajectory of )( j  will be simply a mapping of a stable function. That is, if )( j  is a mapping of a stable 

function, then the resulting compensator will internally stabilize the closed loop system for a stable and 

minimum phase )(00 sG . 

However it is a well-known result that a stabilizing controller can itself be unstable. In practice, it will be 

desirable to have a stable and stabilizing controller, e.g. if the feedback loop opens due to sensor or actuator 

failure, an unstable controller can become problematic. The following main result solves this strong stabilization 

problem. 

Proposition 5: If )(00 sG  is both stable and minimum phase and )( jopt is a mapping of a stable function 

and, in addition, 1)Re( opt  when 0)Im( opt , then the resulting controller will not only internally 

stabilize the closed loop system and but also be itself stable. 

Proof: It is first noted that the loop gain can be described by: 

)(1

)(
)()()( 00 


j

j
jGjKjL




                                                                                                      (10) 

The expression is equivalent to a closed loop system with loop gain )( j ), thus L will be stable if  )( j  

is also stable and its mapping of the Nyquist D-contour does not enclose the (-1, 0) point on the complex plane. 

Both of the stability conditions can simultaneously be met by ensuring that the )( j always crosses the real 

axis to the right of the (-1, 0) point. If now )(00 sG  is stable and minimum phase, then for a stable L, )(sK  

will be stable and there will be no unstable pole-zero cancellations between )(00 sG  and )(sK . This completes 

the proof.ͣ 

Remark 5: The assumption that )(00 sG  is both stable and minimum phase is not unduly restrictive since it is 

very likely that the sensor and actuator can be arranged to be collocated. As a consequence, the positive realness 

of )(00 sG  can be achieved.  But it will be also reminded that the controller realization algorithm to be 

developed below can be used to account for  a non-minimum phase )(00 sG . 
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Now the optimal controller still needs to be constructed from the optimal choise )( jS  over the 

frequency band  N1̍ . From Proposition 5, this is essentially a problem of finding a stable transfer 

function )(s that interpolates the data points defined by )( j  over  N1̍ . This turns out to be a 

generalized Nevanlinna-Pick interpolation problem whose answer is provided by a modifed Pick condition [23]: 

Modifed Pick Condition for Stable Interpolation: A stable transfer function )(s that interpolates the 

optimal choice defined by )( jopt  over  N1̍  exists if and only if the Pick matrix P is positive 

definite: 

Nlk
lk

lk

aj

M
P






















,1

2
___

2)(

/1


, where i is the optimal choice )( iopt j  for frequency i  ],1[ Ni ; 

a  and M are positive real numbers defining the minimal degree of stability and maximum modulus of )(s  

on the half plane as  )( . 

However, that P fails to be positive definite would imply that the desired transfer function )(s does 

not exist. The best appoximation to the optimal data points must be found. This can be achieved through a series 

of linear matrix inequalities (LMIs), with some of which defines the uncertainty bounded around each data 

points )( iopt j  for frequency i  over the frequency band ],[ 1 N . By gradually relaxing the uncertainty 

bound, the best appoximation to the optimal data points will be eventually obtained. The desired stable transfer 

function )(s  that best interpolates the optimal  choice is then obtained for either transfer function or state-

space representation [24]. Manipulating Equation (9) leads to the optimal controller 

  )()(1

)(
)(

00 sGs

s
sK




 .  

Remark 6: It is noted that the above optimal controller will be guranteed to provide best approximation to the 

performance specified in both )( jy and sjzi )(   over the frequency band ],[ 1 N . Conventioanly, this 

problem is to be formulated as a mixed sensitivity problem such as 









)()(

)()(

)()(

11

jRsW

jRsW

jSsW

nn

s


. While there exist 

rule-of-thumbs to choose the weighting functions to shape the sensitivities, it is still difficult to specify the 

performance or exploit performance limitations over any frequency band, nevertheless to tell if a performance 

specification in sensitivities is feasible or not.  

Remark 7: It remains to see that the above procedure for optimal controller synthesis is a universal method to 

performance improvement to current control design, be it H2/H∞ or PID, over any desired frequency band 

],[ 1 N . This is achieved by utilizing the data points generated by current control, and the proposed method 

is then utilized to exploit the limit of performance for best achievable specification. The resulting controller will 
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improve the performance over the frequency band  N1̍  while scarifying performance outside that 

frequency band (due to Bode’s integral relationship). If the to-be-rejected disturbance is known to be in a 

specific frequency band, the proposed method will be beneficiary and certainly of significance to many practical 

systems. 

5. Disturbance Attenuation for a Rotor Blade Structure: Discrete Frequency Control 

In this section, a practical example is provided for discrete frequency control. Consider a rotor blade structure 

where disturbance enters through blades propagating along the shaft, the system is represented in (11) and the 

scenario is that only feedback control u=Ky is available to control both y and z at a frequency  . u represents 

the force applied at the base of the rotor shaft , y is the acceleration at the base of the shaft and  z is the 

acceleration on the rotor blade.   









)(j

)(j




z

y




)(j

)(j

10

00




G

G




)(j

)(j

11

01




G

G








)(j

)(j




d

u
                                                                                                   (11) 

Fig. 2 (a) shows the measured frequency response of the blade acceleration to excitation of the blade (the plot is 

hence of )(11 jG  ). The first bending mode resonance in the region of 244Hz clearly leads to a peak in the 

transmission along the shaft as shown in the measured base response )(01 jG  in Fig. 2 (b). 
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Fig. 2: (a) blade response to blade excitation ( )(11 jG );    (b) Base response to blade excitation ( )(01 jG ). 

Now map the R-circle onto the complex S-plane through the Möbius transformation defined by (7) at 

244 Hz. The resulting geometry of R and S is shown in Fig. 3. Also shown (dotted circles) are the 

mappings that represent a 6dB attenuation boundary for y and z, respectively. 
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Fig. 3: Geometry of S and R for 244 Hz. 

Feasibility of Simultaneous Reduction: From Fig. 3, it is seen that there is a significant area of intersection 

between the unit S-circle and R-circle. And it follows from Proposition 1 that simultaneous attenuation in 

)( jy  and )( jz  for 244 Hz is feasible. 

Level of Reduction and Optimal Control Design: Now choose 3 points labelled A, B and C in Fig. 3 and 

construct the corresponding controller respectively. Since point A lies on the boundary of the unit S-circle and 

well within the 6dB boundary of the R-circle, Proposition 2 shows that the resulting optimal controller will 

leave )( jy  unchanged while reducing )( jz  by a little over 11dB; conversely, the optimal controller with 

choosing point C will reduce  )( jy  by a little under 6dB without increasing )( jz ; finally point B lies on 

the midpoint of intersection, and its location indicates the resulting optimal controller will reduce both )( jy  

and )( jz  by around 3dB. The optimal controller for these three cases can be constructed from equation (9) of 

Proposition 3. Each of them can then be implemented using the recursive least squares algorithm for the 

condition of fixed amplitude 244Hz sinusoidal disturbance forces. The simulation results are shown as 

acceleration time-histories in Fig. 4. The instant at which the controller is turned on in each case will be noted 

by the disturbance. It is seen clearly that the controller performs as predicted. 
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Fig. 4: Acceleration Time-Histories Each of the 244Hz Controllers 

Finally it will be worth pointing out that the design approach presented here is of great significance 

particularly when dealing with the practical difficulties associated with large scale interconnected systems. In 

the case of rotor blade structure there are numerous difficulties relating to the practical implementation of 

actuators and sensors into rotating frames. To resolve these problems, two distinctive solutions have been 

proposed: one is to confine attentions to analysis of individual elements [25], e.g. on shaft control [26] or on 

blades [27]; the other is to integrate smart materials directly into the blades acting as actuators, for example in 

references [28] and [29], and thus to treat the rotor blade structure as an integrated system. However, the former 

solution can cause serious problems since optimal control on the shaft can substantially enhance the vibration in 

blades and vice versa; the latter solution is very expensive and unproven in real working conditions. What has 

been shown above is that it is possible to control the whole structure using only shaft-based control actions, and 

thus demonstrate the feasibility of controlling a relatively complex system using a simple control strategy.  

6. Broad Band Control and Optimal Controller Performance Improvement 

Consider the broad band case for the region of 244Hz, e.g. over the frequency band [240, 250] Hz. Suppose 

now the following performance specification is given: 

Performance Specification: Design a controller that will provide maximum attenuation in )( jz , but 

without enhancement in )( jy over the frequency band  [240, 250] Hz. 
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Then the geometry of S and R can be plotted frequency-by-frequency as shown in Fig. 5, the above 

performance specification can be realized by the optimal choices that are indicated by the circles. It is seen 

that the required performance can be achieved if the modified Pick matrix is positive definite. While it is 

unfortunate that for the optimal data points, P is not positive definite, henceforth a series of LMIs is 

formulated defining a small bound around the optimal choices. It turns out that only a slight modification 

to the above optimal choices will lead to a positive definiteness of P, implying that the achievable 

performance is very close to the performance specification, that is: the resulting controller will provide 

maximum attenuation in )( jz while not amplifying the disturbance in )( jy over the frequency band  

[240, 250] Hz. This is confirmed by the result in Fig. 6. 
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Fig. 5: Geometry of S and R over [240, 250] Hz: the red slash-dot circles are R-circles; the blue dotted lines are optimal lines 

for each S-R geometry; while the circles are the optimal choices that are determined by the performance specification. 
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Fig. 6: On-line Performance of Resulting Controller (a) Significant Attenuation in )( jz (b) Disturbance is not enhanced 

in )( jy  

 

Now the more interesting thing is to demonstrate that the proposed method can be a universal method to 

performance improvement to current control design over any desired frequency band ],[ 1 N . An H∞ 

controller is to be constructed for the rotor blade example, resulting in a performance at the blades in Fig. 7.  
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(a)                                                                             (b) 

Fig. 7: (a) optimal controller performance for blade response to excitation; (b) magnified view over frequency band [240, 

280] Hz. Significant vibration suppression is achieved over this frequency band. 

 

Although the H∞ controller performance can be further improved through, e.g. weighting functions, the 

problem of tailing performance over any pre-specified frequency band is still difficult to solve. As already 

commented, the proposed method can be used for such a purpose based on the H∞ controller. 

Case I: In-band Performance Improvement 

From Fig. 7, it is seen that the peak around 244Hz is “dragged down” by the H∞ controller, and thus disturbance 

is attenuated significantly over the first bending mode resonance. However it is also noticed that there is a 

second bending mode resonance at 225Hz, where unfortunately the resulting H∞ controller fails to attenuate the 

disturbance (H∞ control, by definition, always tries to minimize the frequency response function at the 

frequency with maximum magnitude.) Now the objective is to achieve attenuation over the frequency band 

covering both the two bending modes resonances. Application of the proposed methodology over, e.g. [200, 

300]Hz, gives the result in Fig. 8. 
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(a)                                                                             (b) 

Fig. 8: (a) proposed controller performance for blade response to excitation; (b) magnified view over frequency band [180, 

310] Hz. Vibration suppression is achieved over this frequency band covering both the first and the second bending modes. 
 

It is seen that the proposed method improves the H∞ controller performance by sacrificing the 

performance outside, while significantly extending the effective frequency band from [240, 280]Hz to [180, 

310]Hz. In the case where it is known that there is no disturbance force over the targeted frequency band, e.g. if 

there is no disturbance outside [200, 300]Hz in the rotor blade system, then it is desirable to improve the H∞ 

controller performance over this frequency band without any concern upon the performance outside that 

frequency band. In fact, as the frequency spectrum of the disturbance entering the system can be estimated in 

practical engineering (or a band-pass filter can be utilized), it is meaningful to ignore the out-band performance 

deterioration while concentrating only on the desired frequency band, e.g. covering both the first and the second 

resonance modes, other than only one of them. 

Case II: Out-band Performance Improvement 

However, if the out-band performance is indeed a concern, then the proposed method can be utilized to re-shape 

the performance over required frequency band. In practice, it might be concerned either low frequency band or 

high frequency band. An application of the methodology over [100, 200]Hz provides improved performance 

over the H∞ control over this low frequency band as shown in Fig. 9 (a); while an application of the 

methodology over [300, 500]Hz provides improved performance over  the H∞ control over this high frequency 

band as shown in Fig. 9 (b). Thus the proposed method can indeed be utilized to re-shape control performance 

over a desired frequency band depending on practical interest. 
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(a)                                                                             (b) 

Fig. 9: Control performance improvement over (a) low frequency; (b) high frequency. 
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7. Conclusion 

Disturbance attenuation either at a discrete frequency or over a frequency band has been considered in this paper. 

A methodology has been proposed for addressing this problem. For many practical engineering systems, it is 

often feasible to estimate the spectrum of exogenous disturbance. There are cases where band-pass filters are 

used intentionally allowing disturbance with specific frequency band entering the system, e.g. radar or sonar 

detection & anti-detection etc, then the problem of attenuating disturbance over (any) prescribed frequency band 

becomes important. The proposed method thus provides a framework to systematically tackling the underlying 

issues such as performance limitation, existence of controllers fulfilling prescribed performance, including the 

problem of improving the performance of an existing controller etc. Therefore the results presented in this paper 

provide new insights in the field of disturbance attenuation in linear systems. 
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